Description
有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作:
1.选择一行,该行每个格子的权值加1或减1。
2.选择一列,该列每个格子的权值加1或减1。
现在有K个限制,每个限制为一个三元组(x,y,c),代表格子(x,y)权值等于c。
问是否存在一个操作序列,使得操作完后的矩阵满足所有的限制。
如果存在输出”Yes”,否则输出”No”。
先输入一个T(T <= 5)代表输入有T组数据,每组数据格式为:
第一行三个整数n, m, k (1 <= n, m,k <= 1000)。
接下来k行,每行三个整数x, y, c。
Solution
我是谁,差分约束是啥,这是哪
考虑记行操作为x[],列操作为y[],那么一个限制等价于x[i]+y[j]=c
转换一下就是x[i]-(-y[j])<=c,-y[j]-x[i]<=-c
注意到这个和最短路的松弛条件很像,即最短路上满足dis[y]-dis[x]<=w[x][y]
那么对于这种形式的限制连边y[j]到x[i]跑最短路就行了。不需要输出方案就判环嘛
Code
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define fill(x,t) memset(x,t,sizeof(x))
const int N=4005;
const int E=10005;
struct edge {int y,w,next;} e[E];
bool vis[N];
int dis[N],cnt[N];
int ls[N],edCnt;
int read() {
int x=0,v=1; char ch=getchar();
for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
return x*v;
}
void add_edge(int x,int y,int w) {
e[++edCnt]=(edge) {y,w,ls[x]}; ls[x]=edCnt;
}
bool spfa(int st) {
std:: queue <int> que;
vis[st]=true; dis[st]=0;
bool ret=false;
for (que.push(st);!que.empty();) {
int now=que.front(); que.pop();
if (++cnt[now]==1000) return true;
for (int i=ls[now];i;i=e[i].next) {
if (dis[now]+e[i].w<dis[e[i].y]) {
dis[e[i].y]=dis[now]+e[i].w;
if (!vis[e[i].y]) {
que.push(e[i].y); vis[e[i].y]=true;
}
}
} vis[now]=false;
}
return false;
}
int main(void) {
for (int T=read();T--;) {
edCnt=0; fill(ls,0); fill(vis,0);
int n=read(),m=read(),k=read();
rep(i,1,k) {
int x=read(),y=read(),c=read();
add_edge(y+n,x,c);
add_edge(x,y+n,-c);
}
fill(dis,63); fill(cnt,0);
bool flag=false;
rep(i,1,n+m) if (dis[i]==dis[0]) {
flag|=spfa(i);
}
flag?puts("No"):puts("Yes");
}
return 0;
}