Description
This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of4n+1 numbers. Here, we do only a bit of that.
An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are theH-numbers. For this problem we pretend that these are the only numbers. TheH-numbers are closed under multiplication.
As with regular integers, we partition the H-numbers into units,H-primes, and H-composites. 1 is the only unit. AnH-number h is H-prime if it is not the unit, and is the product of twoH-numbers in only one way: 1 × h. The rest of the numbers areH-composite.
For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.
Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly twoH-primes. The two H-primes may be equal or different. In the example above, all five numbers areH-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of threeH-primes.
Input
Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.
Output
For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.
Sample Input
21 85 789 0
Sample Output
21 0 85 5 789 62
/* H-numbers是所有模4余1的数 H-numbers也分素数和复数 由两个素数相乘得到的叫做迷你数 给一个H。求迷你数的个数 需要用筛法筛选出1000000这里的素数。 筛完再筛掉%4!=1的数,剩下的就是可以用的素数了。 */ #include <iostream> #include <cstdio> #include <algorithm> #include <set> using namespace std; #define maxn 1000008 bool A[maxn]={0}; int B[120000]; int C[maxn]; bool vis[maxn]; set <int> coll; int main() { for(int i=2;i*i<=maxn;i++) { if(!A[i]&&i%4==1) { int k=1; for(int j=i*5;j<=maxn;j=i*k)//注意在H数的世界里筛法要适当修改。因为不会有234这些倍数 { A[j]=1; k+=4; } } } A[1]=1; int k=0; for(int i=1;i<=maxn;i+=4)//20多W次运算 { if(!A[i])B[++k]=i; } int j=2; int t=0; for(int i=1;i<=k;i++) { for(int j=1;j<=k;j++) { if(B[i]*B[j]>maxn)break; if(!vis[B[i]*B[j]]) { vis[B[i]*B[j]]=1; C[++t]=B[i]*B[j]; } } } sort(C+1,C+1+t); int n; while(scanf("%d",&n)!=EOF&&n) { int l=1,r=t; while(l<r)//二分搜索。 { int mid=(l+r)/2; if(C[mid]>=n) { r=mid; } else l=mid+1; } if(C[l]<=n) cout<<n<<" "<<l<<endl; else cout<<n<<" "<<l-1<<endl; } return 0; }
做法二:
#include <iostream> #include <cstdio> using namespace std; #define maxn 1000008 bool Hprime[maxn]={0}; bool minih[maxn]={0}; int sum[maxn]; int main() { for(int i=5;i<=maxn;i+=4) { for(int j=5;j<=maxn;j+=4) { if(i*j>maxn)break; if(!Hprime[i]&&!Hprime[j])//如果这两个都是素数 { minih[i*j]=1; } else minih[i*j]=0; Hprime[i*j]=1; } } int count=0; for(int i=1;i<=maxn;i+=4) { if(minih[i])count++; sum[i]=count; } int n; while(scanf("%d",&n)!=EOF&&n) { printf("%d %d\n",n,sum[n]); } return 0; }