缓存穿透
缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于是向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中,于是都去请求了持久层数据库。这会给持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。
在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。
这里需要注意和缓存击穿的区别,缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞。
解决方案
有很多种方法可以有效地解决缓存穿透问题
- 最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。
- 另外也有一个更为简单粗暴的方法,如果一个查询返回的数据为空(不管是数 据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。
缓存雪崩
缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重雪崩。
解决方案
-
redis高可用(事前架构)
- 这个思想的含义是,既然redis有可能挂掉,那我多增设几台redis,这样一台挂掉之后其他的还可以继续工作,其实就是搭建的集群。
-
限流降级(发生中的紧急措施)
- 这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
-
数据预热(事前预防)
- 在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。
-
给key的过期时间加随机数,防止key在同一时间失效(事前应用)
- 比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
缓存击穿
是指一个key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞
缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
解决方案
- 使用同步锁 synchronized 关键字,修饰在获取缓存的方法里面,保证在多用户同时请求条件下,只有第一个进入的线程去判断是否要查询数据库并存入缓存,其他线程只需在第一个线程结束后,从缓存中读取数据即可,无需再查询数据库。
上面是对缓存穿透的再次优化,加入线程同步锁 以及 双重检查锁.
双重检查锁:1.避免当缓存数据没有失效时,其他线程排队等待。
2.当第一个线程从数据库中获取到数据并存入缓存中时,其他线程直接从缓存获取数据即可。 - 不设置缓存时间,由后台创建定时任务去维护这部分缓存数据。这种方法请求时直接从缓存中获取数据,无需再判断是否从数据库中获取,定时任务也可在请求较少的时间段分批更新缓存数据。
当然代码量、代码复杂度增大,分批更新代表需要多个定时任务去维护缓存数据,同时更新有可能会造成缓存雪崩的情况。
原文引用
部分内容转载自以下文章
原文链接