前言
在初学GANs的时候我们可能会尝试自己写一些简易的模型,这对于学习代码有帮助,但是距离想真正实现自己的想法和创意是很不够的。所以我觉得,学习到一些高级的GANs架构的代码技巧是会挺有帮助的,所以在此专栏中,我将专门记录我特别想学到的一些最新架构的代码实现方式,并进行非常细致的记录和讲解。
目录
StyleGAN->GauGAN->SinGAN三份开源代码是我认为目前所有GANs中最有价值的代码(当然还有BigGAN->VQVAE2->LOGAN也值得学但Deepmind不开源哪~~~),首先StyleGAN就是“细节记忆”特别强,生成图片足够清晰;然后GauGAN“细节关系推理”特别好,基于语义布局的生成能学到组件间的逻辑联系(譬如湖面和倒影);SinGAN就听效果(单张图片模式推理)就特别牛逼,但是其实际价值还有待学习考证。。
架构1 StyleGAN
★ 重点:AdaIN机制、Progressive动态变化过程
★ 学习AdaIN的价值:1.AdaIN改变了原始生成器输入的z的功能,即将传统GANs中z控制合成图片的内容(即z直接映射到图片),变成了z控制合成图片的风格(即z先映射到样式空间w,然后通过让w在平均脸的各个层级上添加样式调节从而实现千人千面的生成),这是一种非常巧妙且具有普适性的技巧。2. AdaIN适合于样式迁移(Style Transfer)任务中。
笔记内容:
第一章 StyleGAN原理介绍
第二章 StyleGAN代码解读(上)
第二章 StyleGAN代码解读(下)
第三章 StyleGAN模型修改与拓展
架构2 GauGAN
★重点:Spade机制
待写
架构3 SinGAN
★重点:多尺度结构、马尔可夫判别器(PatchGAN)
待写