【GANs代码学习】目录

 前言

  在初学GANs的时候我们可能会尝试自己写一些简易的模型,这对于学习代码有帮助,但是距离想真正实现自己的想法和创意是很不够的。所以我觉得,学习到一些高级的GANs架构的代码技巧是会挺有帮助的,所以在此专栏中,我将专门记录我特别想学到的一些最新架构的代码实现方式,并进行非常细致的记录和讲解。

 目录

  StyleGAN->GauGAN->SinGAN三份开源代码是我认为目前所有GANs中最有价值的代码(当然还有BigGAN->VQVAE2->LOGAN也值得学但Deepmind不开源哪~~~),首先StyleGAN就是“细节记忆”特别强,生成图片足够清晰;然后GauGAN“细节关系推理”特别好,基于语义布局的生成能学到组件间的逻辑联系(譬如湖面和倒影);SinGAN就听效果(单张图片模式推理)就特别牛逼,但是其实际价值还有待学习考证。。

 架构1 StyleGAN

    ★ 重点:AdaIN机制、Progressive动态变化过程
    ★ 学习AdaIN的价值:1.AdaIN改变了原始生成器输入的z的功能,即将传统GANs中z控制合成图片的内容(即z直接映射到图片),变成了z控制合成图片的风格(即z先映射到样式空间w,然后通过让w在平均脸的各个层级上添加样式调节从而实现千人千面的生成),这是一种非常巧妙且具有普适性的技巧。2. AdaIN适合于样式迁移(Style Transfer)任务中。
    笔记内容:
      第一章 StyleGAN原理介绍
      第二章 StyleGAN代码解读(上)
      第二章 StyleGAN代码解读(下)
      第三章 StyleGAN模型修改与拓展

 架构2 GauGAN

    ★重点:Spade机制
    待写

 架构3 SinGAN

    ★重点:多尺度结构、马尔可夫判别器(PatchGAN)
    待写

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值