一、题目
实现 int sqrt(int x)
函数。
计算并返回 x 的平方根,其中 x 是非负整数。
由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。
示例 1:
输入: 4 输出: 2
示例 2:
输入: 8 输出: 2 说明: 8 的平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。
二、思路
采用二分查找的思想,每次把划分区间分为3部分[0,mid),mid,(mid,end],从而不断缩小空间,这里和传统的二分查找不太一样,如果按照如下所写的代码会出现下图的情况:
在循环过程中会出现下次循环的范围不包含正确答案的情况,虽然最后能返回正确答案,但是这种二分迭代的情况不利于我们思考,对于这种特殊的情况我们记住程序就好了。如下图所示:如果输入15,正确答案返回3,其中某一次循环中出现的情况:
第一次:start=0,mid=7,end=15
第二次:start=0,mid=3,end=6
以第二次为例,这是情况如下:
由于3^3=9<15,所以第三次会在[4,6]中寻找答案,继续
第三次:start=4,mid=5,end=6
第四次:start=4,mid=4,end=4
第四次还是不满足条件,这是end=mid-1=3,刚好是正确答案。。。
所以这种解法比较巧,记住就好了。
三、代码
public class LeetCode69 {
public static void main(String[] args){
int t = mySqrt(19);
System.out.print(t);
}
public static int mySqrt(int x) {
if(x <= 1)
return x;
int start = 0;
int end = x/2 + 1;
while(start <= end){
long mid = (start + end) / 2;
long sq = mid * mid;
if(sq == x)
return (int)mid;
if(sq > x)
end = (int)mid -1;
else start = (int)mid + 1;
}
return end;
}
}
四、总结