一、题目
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
二、思路
登上第1级:1种
登上第2级:2种
登上第3级:1+2=3种(前一步要么从第1级迈上来,要么从第2级迈上来)
登上第4级:2+3=5种(前一步要么从第2级迈上来,要么从第3级迈上来)
登上第5级:3+5=8种
登上第6级:5+8=13种
登上第7级:8+13=21种
登上第8级:13+21=34种
登上第9级:21+34=55种
登上第10级:34+55=89种.
这他娘的就是一个斐波那契数列!
三、代码
public class Leetcode70 {
public static void main(String[] args){
int n = climbStairs(3);
System.out.print(n);
}
public static int climbStairs(int n){
int a = 1,b = 1,result = 0;
if(n == 0||n == 0)
return 1;
while(--n > 0){
result = a + b;
b = a;
a = result;
}
return result;
}
}
四、总结
在LeetCode中不能使用递归,因此本次写一个非递归的斐波那契数列