TreeNode

史上最全遍历二叉树详解(C++模板)

二叉树的初始化

首先要构造一个二叉树,这个能够方便我们对其了解。众所周知,二叉树遍历方式用前序遍历,中序遍历,后序遍历和层次遍历;每种遍历的方法还有不相同,前中后序遍历可以用迭代和递归完成,而层次遍历更多选择bfs(广度优先这种方法)作为一名学生,更加应该去掌握利用迭代方法

上代码

struct TreeNode{
  int val;
  TreeNode* left;
  TreeNode* right;
  TreeNode(int val1,TreeNode *l = nullptr,TreeNode *r = nullptr){//构造函数
    val = val1;
    left = l;
    right = r;
  }
};

一、利用递归遍历二叉树

因为是递归遍历,就不要过多的文字说明,这是因为比较常规,我尽量都会直接给出代码,而不会过度去说明。

1.1前序遍历(根节点-左子树-右子树)

定义preorder(root)表示当前遍历到root节点的答案。按照定义,我们只要首先将root节点的值加入答案,然后递归调用preorder(root.left)来遍历root节点的左子树,最后递归调用preorder(root.right)来遍历root节点的右子树即可,递归终止的条件为碰到空节点。

   void preorder(TreeNode *root, vector<int> &res) {
        if (root == nullptr) {
            return;
        }
        res.push_back(root->val);   //*注意看这下面三行(然后你就会发现一些规律)
        preorder(root->left, res);
        preorder(root->right, res);
    }
    vector<int> preorderTraversal(TreeNode *root) {
        vector<int> res;
        preorder(root, res);
          return res;
    }

1.2中序遍历(左子树-根节点-右子树)

定义inorder(root) 表示当前遍历到root 节点的答案,那么按照定义,我们只要递归调用 inorder(root.left) 来遍历root节点的左子树,然后将root节点的值加入答案,再递归调用inorder(root.right) 来遍历root 节点的右子树即可,递归终止的条件为碰到空节点

void inorder(TreeNode* root, vector<int>& res) {
        if (!root) {
            return;
        }
        inorder(root->left, res);//这行跟之前有些不同
        res.push_back(root->val);
        inorder(root->right, res);
    }
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> res;
        inorder(root, res);
        return res;
}

1.3 后序(左子树-右子树-根节点)

定义postorder(root)表示当前遍历到root节点的答案。按照定义,我们只要递归调用postorder(root->left)来遍历root节点的左子树,然后递归调用postorder(root->right)来遍历 root节点的右子树,最后将root节点的值加入答案即可,递归终止的条件为碰到空节点。

    void postorder(TreeNode *root, vector<int> &res) {
        if (root == nullptr) {
            return;
        }
        postorder(root->left, res);
        postorder(root->right, res);
        res.push_back(root->val);
    }
    vector<int> postorderTraversal(TreeNode *root) {
        vector<int> res;
        postorder(root, res);
        return res;
    }

1.4遍历的模板如下

    void 函数名(TreeNode *root, vector<int> &res) {
        if (root == nullptr) {
            return;
        }
        #后序遍历
        函数名(root->left, res);
        函数名(root->right, res);
        res.push_back(root->val);
        #中序遍历
        函数名(root->left, res);
        res.push_back(root->val);
        函数名(root->right, res);
        #前序遍历
        res.push_back(root->val);
        函数名(root->left, res);
        函数名(root->right, res);
    }
    vector<int> postorderTraversal(TreeNode *root) {
        vector<int> res;
        函数名(root, res);
        return res;
    }

二、利用迭代遍历

2.1前序

迭代算法,我看了那么多博主的文章,基本都是用栈,一方面也是比较好理解,另外一方面也比较好模板化。代码是重复性的,有规律的。只有认真去理解,才会便于自己去写代码和规范自己代码。

递归思路:先树根,然后左子树,然后右子树。每棵子树递归。在迭代算法中,思路演变成,每到一个节点 A,就应该立即访问它。因为,每棵子树都先访问其根节点。对节点的左右子树来说,也一定是先访问根。
栈S;

while(root|| S不空){
    while(root){
        将root节点的值放入res;
        root压入S;
        root = root=root->left;
    }
    root = 栈顶
    s.pop();
    root = root->right;
}

完整代码如下

   vector<int> preorderTraversal(TreeNode* root) {
        vector<int> res;
        if (root == nullptr) {
            return res;
        }
        stack<TreeNode*> stk;
        while (!stk.empty() || root != nullptr) {
            while (root != nullptr) {     //这一步是将root->left全部压入栈
                res.push_back(root->val);  //这个可以用emplace_back函数替代
                stk.push(root);
                root = root->left;
            }
            root = stk.top();
            stk.pop();
            root = root->right;
        }
        return res;
    }

2.2中序

已知前序怎么去操作,那么对于中序来说那就变得更加简单;只是一个读取的顺序不一样而已。中前后到前中后,无非就是选择读取左结点和头节点的顺序。

vector<int> inorderTraversal(TreeNode* root) {
        vector<int> res;
        stack<TreeNode*> stk;
        while (root != nullptr || !stk.empty()) {
            while (root != nullptr) {
                stk.push(root);
                root = root->left;
            }
            root = stk.top();
            stk.pop();
            res.push_back(root->val);//跟前序的时候,就是讨论何时把结点放到数组中去
            root = root->right;
        }
        return res;
    }

2.3后序

后序主要跟中序的区别就是:头结点比较晚读取,那就要去思考,跟之前的方法是不是差不多,其中不同点在于那里。
难点判断是不是有右子树,如果有的话,我们就要把那个头结点压进入栈,然后在压入右节点。这样根绝栈的特性,我们就可以知道,先出来就是右结点然后就是做节点咯

    vector<int> postorderTraversal(TreeNode *root) {
        vector<int> res;
        if (root == nullptr) {
            return res;
        }
        stack<TreeNode *> stk;
        TreeNode *prev = nullptr;  //这个主要是来判断是否弹出过左结点
        while (root != nullptr || !stk.empty()) {
            while (root != nullptr) {
                stk.push(root);
                root = root->left;
            }
            root = stk.top();
            stk.pop();
            if (root->right == nullptr || root->right == prev) {
                res.push_back(root->val);// root->right == prev是为了压入头结点
                prev = root;
                root = nullptr;  // 为了防止重复压入左节点
            } else {
                stk.push(root);
                root = root->right;
            }
        }
        return res;
    }

后序的迭代相对来说比较难一点,网上还有另外一种解法(可以自行去了解,那种比较简单,利用了对称的原则)

2.4迭代模板

前序和中序:
vector<int> inorderTraversal(TreeNode* root) {
        vector<int> res;
        stack<TreeNode*> stk;
        while (root != nullptr || !stk.empty()) {
            while (root != nullptr) {
                // res.push_back(root->val); 放在着就是前序
                stk.push(root);
                root = root->left;
            }
            root = stk.top();
            stk.pop();
            //  res.push_back(root->val); 放在着就是中序
            root = root->right;
        }
        return res;
    }

后序的模板基本就是靠理解咯

三、层次遍历

层次遍历采取的是bfs,这种比较常见,当然你也可以采取dfs,这种当然可以。我主要去介绍bfs,dfs这种稍微比较不常见。

    vector<vector<int>> levelOrder(TreeNode* root) {
        vector <vector <int>> ret;
        if (!root) {
            return ret;
        }

        queue <TreeNode*> q;
        q.push(root);
        while (!q.empty()) {
            int currentLevelSize = q.size();  //这个很重要,如果没有这个,程序运行后会得到错误的结果
            ret.push_back(vector <int> ());
            for (int i = 1; i <= currentLevelSize; ++i) {
                auto node = q.front(); q.pop();
                ret.back().push_back(node->val);
                if (node->left) q.push(node->left);
                if (node->right) q.push(node->right);
            }
        } 
        return ret;
    }

本文参考:

-二叉树的前序遍历
-二叉树的中序遍历
-二叉树的后序遍历
-二叉树的层序遍历

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值