文章目录
Redis是什么
Redis能干什么
1、内存存储、持久化,内存中是断电即失,所以说持久化很重要,持久化的两种方式rdb、aof
2、效率高,可用于高速缓存
3、可以实现简单的发布订阅
4、地图信息分析
5、计时器、计数器(用于浏览量)
·····
特性
1、多样的数据类型
2、持久化
3、集群
4、事物
······
linux下安装
- 下载https://redis.io/download
放在opt下 - 解压包得到文件
tar -zxf redis-6.2.6.tar.gz
解压后得到的文件,还需要安装,安装需要gcc-c++
安装gcc——yum install gcc-c++
安装完成gcc执行——make
和make install
查看是否安装,安装后的路径/usr/local/bin/
已经可以看到redis了
- 配置文件
在bin目录创建一个备份文件夹,用来存放配置文件,以后启动用这个配置文件,配置文件在前面解压的目录里,拿过来
- 启动
默认不是后台启动,更改配置文件为后台启动
vim backupfile/redis.conf
找到daemonize
,改为yes
bin目录下执行命令redis-server backupfile/redis.conf
来启动,backupfile/redis.conf
是指定配置文件的路径;
连接redis——redis-cli -p 6379
,连接以后ping的结果是pong,连接成功,存取值试试,也没问题
- 关闭redis服务
SHUTDOWN
性能测试redis-benchmark
在redis的bin目录下有个redis-benchmark
,这个是官方提供的性能测试工具
菜鸟教程:https://www.runoob.com/redis/redis-benchmarks.html
#测试 100并发 10W请求
redis-benchmark -h localhost -p 6379 -c 100 -n 100000
以下是SET请求数据,还有其他get等等,只贴了set出来
数据库
redis默认有16个数据库,连接redis-cli
后使用select来切换。每个数据库数据不互通。
清空所有库flushall
,清空当前库flushdb
单线程
Redis是单线程的,基于内存操作,所以CPU并不是瓶颈,瓶颈是内存和网络带宽,
Redis是单线程的,为什么这么快。
- 高性能的服务器不一定是多线程的
- 多线程的也不一定比单线程的效率高,多线程和CPU有关,而CPU又会上下文切换
速度:CPU>内存>硬盘
Redis是将所有数据放在内存中,对于内存来说,没有CPU的上下文切换,效率是最高的,多次读写都是在一个CPU上。
五大数据类型
Redis-Key
127.0.0.1:6379> set name zhangsan #存数据
OK
127.0.0.1:6379> set age 11
OK
127.0.0.1:6379> keys * #查看所有key
1) "age"
2) "name"
127.0.0.1:6379> EXISTS name # EXISTS:查看key是否存在,1存在,0不存在
(integer) 1
127.0.0.1:6379> EXISTS name1
(integer) 0
127.0.0.1:6379> move name 1 # move:移除key,1代表当前库
(integer) 1
127.0.0.1:6379> keys *
1) "age"
127.0.0.1:6379> EXPIRE age 10 # EXPIRE :设置key的过期时间10s
(integer) 1
127.0.0.1:6379> ttl age # ttl:查看key的剩余过期时间,倒计时
(integer) 6
127.0.0.1:6379> ttl age
(integer) 3
127.0.0.1:6379> ttl age # ttl:如果过期时间是-2,代表已经结束,就会被移除
(integer) -2
127.0.0.1:6379> keys *
(empty array)
127.0.0.1:6379> set name zhangsan
OK
127.0.0.1:6379> set age 1
OK
127.0.0.1:6379> type name # type:查看key是什么类型
string
127.0.0.1:6379> type age
string
127.0.0.1:6379> keys login_tokens:* #keys key:* 所有key中模糊查询key:开头的
1) "login_tokens:fbd19534-9546-4409-8133-57af4a4776a1"
2) "login_tokens:5094cae1-febf-4281-ad04-011636eb05d8"
3) "login_tokens:db79df0d-3418-4612-86c1-c8c53d161d2f"
查看其它Redis命令:https://redis.io/commands
string
127.0.0.1:6379> set k1 v1
OK
127.0.0.1:6379> get k1
"v1"
127.0.0.1:6379> APPEND k1 hello # APPEND :在key的值后面追加字符串hello,如果key不存在就直接set
(integer) 7
127.0.0.1:6379> get k1
"v1hello"
127.0.0.1:6379> STRLEN k1 # STRLEN :获取key的长度
(integer) 7
127.0.0.1:6379> APPEND k1 ,world
(integer) 13
127.0.0.1:6379> STRLEN k1
(integer) 13
127.0.0.1:6379> get k1
"v1hello,world"
# i++
# 步长 i+=
127.0.0.1:6379> set views 0 # 初始值0
OK
127.0.0.1:6379> get views
"0"
127.0.0.1:6379> incr views # incr :自增1
(integer) 1
127.0.0.1:6379> get views
"1"
127.0.0.1:6379> incr views
(integer) 2
127.0.0.1:6379> get views
"2"
127.0.0.1:6379> decr views # decr :自减1
(integer) 1
127.0.0.1:6379> decr views
(integer) 0
127.0.0.1:6379> get views
"0"
127.0.0.1:6379> INCRBY views 15 # INCRBY :设置步长,指定增量
(integer) 15
127.0.0.1:6379> DECRBY views 8 # DECRBY :
(integer) 7
# 字符串范围 range
127.0.0.1:6379> set k1 "helloWorld"
OK
127.0.0.1:6379> get k1
"helloWorld"
127.0.0.1:6379> GETRANGE k1 0 4 # GETRANGE :获取下标0到4的字符串
"hello"
127.0.0.1:6379> GETRANGE k1 0 -1 # # GETRANGE :获取所有字符串
"helloWorld"
# 替换
127.0.0.1:6379> set key2 abcdefg
OK
127.0.0.1:6379> SETRANGE key2 1 xx # SETRANGE :替换指定位置的字符串
(integer) 7
127.0.0.1:6379> get key2
"axxdefg"
# setex (set with expire) 设置过期时间
# setnx (set if not exist) 不存在再设置(分布式锁中常用)
127.0.0.1:6379> SETEX key3 30 hello # SETEX :设置key在30s后过期
OK
127.0.0.1:6379> ttl key3 # ttl:过期剩余时间
(integer) 27
127.0.0.1:6379> get key3
"hello"
127.0.0.1:6379> ttl key3
(integer) 14
127.0.0.1:6379> keys *
1) "key2"
127.0.0.1:6379> setnx mykey redis # setnx :如果key不存在,就存储
(integer) 1
127.0.0.1:6379> keys *
1) "mykey"
2) "key2"
127.0.0.1:6379> ttl key3 # tti:查看key是否过期,-2是已经不存在
(integer) -2
127.0.0.1:6379> keys *
1) "mykey"
2) "key2"
127.0.0.1:6379> setnx mykey hello # setnx:存储值,key已经存在返回0,不设置
(integer) 0
127.0.0.1:6379> get mykey
"redis"
# mset
# mget
127.0.0.1:6379> mset k1 v1 k2 v2 k3 v3 # mset :同时设置多个值
OK
127.0.0.1:6379> keys *
1) "k3"
2) "k1"
3) "k2"
127.0.0.1:6379> mget k1 k2 k3 # mget:同时获取多个值
1) "v1"
2) "v2"
3) "v3"
127.0.0.1:6379> msetnx k1 v1 k4 v4 # msetnx :原子性的操作,要么一起成功,要么一起失败
(integer) 0
127.0.0.1:6379> get k4
(nil)
# 对象
set user:1 {name:zhangsan,age:3} # 设置一个user:1对象,值为json字符来保存一个对象
# user:{id}:{filed}
127.0.0.1:6379> set user:1 {name:zhangsan,age:3}
OK
127.0.0.1:6379> get user
(nil)
127.0.0.1:6379> get user:1
"{name:zhangsan,age:3}"
127.0.0.1:6379> mset user:1:name zhangsan user:1:age 2
OK
127.0.0.1:6379> mget user:1:name user:1:age
1) "zhangsan"
2) "2"
getset # 先get再set
127.0.0.1:6379> getset db redis # 如果不存在,返回nil,然后设置值
(nil)
127.0.0.1:6379> get db
"redis"
127.0.0.1:6379> getset db mongodb # 如果存在,先获取值返回,然后设置值
"redis"
127.0.0.1:6379> get db
"mongodb"
string使用场景
计数器、统计多单位的数量、粉丝数、对象缓存存储
List
所有命令都是L开头
127.0.0.1:6379> LPUSH list one # LPUSH :将一个值或多个值插入到列表头部(左)
(integer) 1
127.0.0.1:6379> LPUSH list two
(integer) 2
127.0.0.1:6379> LPUSH list three
(integer) 3
127.0.0.1:6379> LRANGE list 0 -1 # LRANGE :通过区间获取具体值,0到-1获取全部值
1) "three"
2) "two"
3) "one"
127.0.0.1:6379> LRANGE list 0 1 # LRANGE :左边开始,下标0到1的值
1) "three"
2) "two"
127.0.0.1:6379> RPUSH list rvalue # RPUSH :将一个值或多个值插入到列表尾部(右)
(integer) 4
127.0.0.1:6379> LRANGE list 0 -1
1) "three"
2) "two"
3) "one"
4) "rvalue"
# LPOP RPOP
127.0.0.1:6379> LPOP list # LPOP :从左边移除一个值
"three"
127.0.0.1:6379> LRANGE list 0 -1 #
1) "two"
2) "one"
3) "rvalue"
127.0.0.1:6379> rpop list # rpop :从右边移除一个值
"rvalue"
127.0.0.1:6379> lrange list 0 -1
1) "two"
2) "one"
# LINDEX
127.0.0.1:6379> lrange list 0 -1 # lrange :通过下标获取值
1) "two"
2) "one"
127.0.0.1:6379> LINDEX list 1
"one"
127.0.0.1:6379> LINDEX list 0
"two"
# LLEN
127.0.0.1:6379> LPUSH list one
(integer) 1
127.0.0.1:6379> LPUSH list two
(integer) 2
127.0.0.1:6379> LPUSH list three
(integer) 3
127.0.0.1:6379> LLEN list # LLEN :获取list长度
(integer) 3
# LREM:移除list集合中的指定个数的value
127.0.0.1:6379> LRANGE list 0 -1
1) "three"
2) "three"
3) "two"
4) "one"
127.0.0.1:6379> LREM list 1 one # LREM :移除list中,1个值为one的value
(integer) 1
127.0.0.1:6379> LRANGE list 0 -1
1) "three"
2) "three"
3) "two"
127.0.0.1:6379> lrem list 2 three # LREM :移除list中,2个值为three的value
(integer) 2
127.0.0.1:6379> lrange list 0 -1
1) "two"
# trim 修剪,截断
127.0.0.1:6379> RPUSH mylist hello
(integer) 1
127.0.0.1:6379> RPUSH mylist hello1
(integer) 2
127.0.0.1:6379> RPUSH mylist hello2
(integer) 3
127.0.0.1:6379> RPUSH mylist hello3
(integer) 4
127.0.0.1:6379> LTRIM mylist 1 2 # LTRIM:通过下标截取指定的长度,list已经被改变了,只剩下截取的元素了
OK
127.0.0.1:6379> lrange mylist 0 -1
1) "hello1"
2) "hello2"
rpoplpush 移除列表的最后一个元素并移动到新的列表中
127.0.0.1:6379> RPUSH mylist hello
(integer) 1
127.0.0.1:6379> RPUSH mylist hello1
(integer) 2
127.0.0.1:6379> RPUSH mylist hello2
(integer) 3
127.0.0.1:6379> RPOPLPUSH mylist myotherlist # RPOPLPUSH :移除mylist中的最后一个元素到myotherlist
"hello2"
127.0.0.1:6379> LRANGE mylist 0 -1 # lrange:查看原来的列表
1) "hello"
2) "hello1"
127.0.0.1:6379> LRANGE myotherlist 0 -1 # lrange:查看新的列表
1) "hello2"
# lset :将列表中指定下标的值替换为另一个值,更新操作
127.0.0.1:6379> EXISTS list # EXISTS :是否存在
(integer) 0
127.0.0.1:6379> lset list 0 item # lset:在key指定下标替换元素,不存在值就报错
(error) ERR no such key # 没有这个key
127.0.0.1:6379> lpush list value1 # lpush:添加一个值
(integer) 1
127.0.0.1:6379> lrange list 0 0 # lrange:获取key的第0个值
1) "value1"
127.0.0.1:6379> lset list 0 item # lset:更新下标为0的值,更新下标的值
OK
127.0.0.1:6379> lrange list 0 0 # lrange:查看下标0的值
1) "item"
127.0.0.1:6379> lset list 1 other
(error) ERR index out of range # key的下标1不存在,报错
# linsert:将某个具体的value插入到列表中某个元素的前面或者后面,before、after
127.0.0.1:6379> rpush mylist hello
(integer) 1
127.0.0.1:6379> rpush mylist world
(integer) 2
127.0.0.1:6379> LINSERT mylist before world other
(integer) 3
127.0.0.1:6379> lrange mylist 0 -1
1) "hello"
2) "other"
3) "world"
127.0.0.1:6379> LINSERT mylist after world new
(integer) 4
127.0.0.1:6379> lrange mylist 0 -1
1) "hello"
2) "other"
3) "world"
4) "new"
list是一个链表
Set
set不可以重复
127.0.0.1:6379> sadd myset hello # sadd:给set存值
(integer) 1
127.0.0.1:6379> sadd myset world
(integer) 1
127.0.0.1:6379> sadd myset !!
(integer) 1
127.0.0.1:6379> SMEMBERS myset # SMEMBERS :查看set所有值
1) "world"
2) "hello"
3) "!!"
127.0.0.1:6379> SISMEMBER myset hello # SISMEMBER :判断set中是否存在hello,1存在,0不存在
(integer) 1
127.0.0.1:6379> SISMEMBER myset hi
(integer) 0
# scard 获取集合元素个数
127.0.0.1:6379> scard myset # scard :获取set集合中的元素个数
(integer) 3
# srem:移除集合中某个元素
127.0.0.1:6379> SREM myset hello # SREM:移除set中的hello
(integer) 1
127.0.0.1:6379> SCARD myset # SCARD:查看set有几个元素
(integer) 2
127.0.0.1:6379> SMEMBERS myset # SMEMBERS:查看结合所有元素
1) "world"
2) "!!"
127.0.0.1:6379> SRANDMEMBER myset # SRANDMEMBER:随机获取set中的一个元素
"hello2"
127.0.0.1:6379> SRANDMEMBER myset
"!!"
127.0.0.1:6379> SRANDMEMBER myset 2 # SRANDMEMBER:随机获取set中的2个元素
1) "hello2"
2) "world"
127.0.0.1:6379> SRANDMEMBER myset 2
1) "hello2"
2) "world"
127.0.0.1:6379> SRANDMEMBER myset 2
1) "hello2"
2) "world"
127.0.0.1:6379> SRANDMEMBER myset 2
1) "hello1"
2) "!!"
127.0.0.1:6379> SPOP myset # SPOP:随机移除set中的元素
"hello1"
127.0.0.1:6379> SPOP myset
"hello2"
127.0.0.1:6379> SMEMBERS myset # SMEMBERS:查看set所有元素
1) "world"
2) "!!"
# SMOVE:移动元素
127.0.0.1:6379> sadd myset hello
(integer) 1
127.0.0.1:6379> sadd myset world
(integer) 1
127.0.0.1:6379> sadd myset !!
(integer) 1
127.0.0.1:6379> sadd myset2 hello2
(integer) 1
127.0.0.1:6379> SMOVE myset myset2 world # SMEMBERS:myset中的world移动到myset2中,是移动,不是复制
(integer) 1
127.0.0.1:6379> SMEMBERS myset2
1) "hello2"
2) "world"
127.0.0.1:6379> SMEMBERS myset
1) "hello"
2) "!!"
微博、B站共同关注(并集)
数字集合类:
-差集,SDIFF
-交集,SINTER
-并集,SUNION
127.0.0.1:6379> sadd key1 a
(integer) 1
127.0.0.1:6379> sadd key1 b
(integer) 1
127.0.0.1:6379> sadd key1 c
(integer) 1
127.0.0.1:6379> sadd key2 c
(integer) 1
127.0.0.1:6379> sadd key2 d
(integer) 1
127.0.0.1:6379> sadd key2 e
(integer) 1
127.0.0.1:6379> SDIFF key1 key2 # SDIFF :差集
1) "a"
2) "b"
127.0.0.1:6379> SINTER key1 key2 # SINTER :交集,共同好友
1) "c"
127.0.0.1:6379> SUNION key1 key2 # SUNION :并集
1) "c"
2) "b"
3) "d"
4) "a"
5) "e"
微博,A用户将所有关注的人放在一个set集合中,将它的粉丝也放在一个集合中
共同关注,共同爱好,交集
hash
map集合,key-Map
如果key存在,会覆盖
127.0.0.1:6379> hset myhash field1 haha # hset:set一个key-value,value是MAP集合
(integer) 1
127.0.0.1:6379> hget myhash field1 # hget:获取一个字段值
"haha"
127.0.0.1:6379> hmset myhash field1 hello field2 world # hmset:set多个key-value,value是MAP集合
OK
127.0.0.1:6379> hmget myhash field1 field2 # hmget:获取多个字段值
1) "hello"
2) "world"
127.0.0.1:6379> HGETALL myhash # HGETALL:获取全部的数据
1) "field1" # map的key,
2) "hello" # map的value,
3) "field2" # map的key,
4) "world" # map的value,
127.0.0.1:6379> HDEL myhash field1 # HDEL:删除hash指定的key,对应的value也就不存在了
(integer) 1
127.0.0.1:6379> HGETALL myhash
1) "field2"
2) "world"
hlen
127.0.0.1:6379> hmset myhash field1 hello field2 world field3 !! # hmset:存多个值
OK
127.0.0.1:6379> HGETALL myhash # HGETALL:查看hash的所有key和value
1) "field2"
2) "world"
3) "field1"
4) "hello"
5) "field3"
6) "!!"
127.0.0.1:6379> HLEN myhash # HLEN:查看hash数量
(integer) 3
HEXISTS
127.0.0.1:6379> HEXISTS myhash field1 # HEXISTS:判断hash中key是否存在,
(integer) 1 # 1:存在,0不存在
127.0.0.1:6379> HEXISTS myhash field4
(integer) 0
127.0.0.1:6379> HKEYS myhash # HKEYS:获得hash的所有Key,
1) "field2"
2) "field1"
3) "field3"
127.0.0.1:6379> HVALS myhash # HVALS:获得hash的所有value
1) "world"
2) "hello"
3) "!!"
127.0.0.1:6379> hset myhash field4 3 # hset:存一个值
(integer) 1
127.0.0.1:6379> HINCRBY myhash field4 2 # HINCRBY:指定增量
(integer) 5 # 原本是3,增量2,返回结果5
127.0.0.1:6379> HINCRBY myhash field4 -1 # HINCRBY:指定增量
(integer) 4 # 原本是5,增量-1,返回结果4
127.0.0.1:6379> hsetnx myhash field1 hello1 # hsetnx:判断是否存在,存在就失败
(integer) 0
127.0.0.1:6379> hsetnx myhash field5 hello1 # hsetnx:判断是否存在,不存在就存储值
(integer) 1
hash应用,变更的数据,user中包含name和age,尤其用户信息之类的,经常变动的信息,比String类型的mset user:1:name zhangsan user:1:age 2
方便,hmset user name zhangsan age 2
,hash更适合对于对象的存储,String更适合字符串的存储
Zset(有序集合)
在set基础上,增加了一个值,set k1 v1 zset k1 score
127.0.0.1:6379> zadd myset 1 one # zadd:添加一个值
(integer) 1
127.0.0.1:6379> zadd myset 2 two 3 three # zadd:添加多个值
(integer) 2
127.0.0.1:6379> ZRANGE myset 0 -1 # zrange:查看所有key
1) "one"
2) "two"
3) "three"
排序
127.0.0.1:6379> zadd salary 2500 zhangsan 2000 lisi 1000 zhaoliu # 添加多个值
(integer) 3
127.0.0.1:6379> ZRANGEBYSCORE salary -inf +inf # 不带值从小到大排列,只显示key
1) "zhaoliu"
2) "lisi"
3) "zhangsan"
127.0.0.1:6379> ZRANGEBYSCORE salary -inf +inf withscores # ZRANGEBYSCORE 从小到大排列,key value都显示
1) "zhaoliu"
2) "1000"
3) "lisi"
4) "2000"
5) "zhangsan"
6) "2500"
127.0.0.1:6379> ZRANGEBYSCORE salary -inf 2000 withscores # ZRANGEBYSCORE 小于等于两千的,key value都显示
1) "zhaoliu"
2) "1000"
3) "lisi"
4) "2000"
127.0.0.1:6379> ZREVRANGE salary 0 -1 withscores # ZREVRANGE 从大到小排序
1) "zhangsan"
2) "2500"
3) "lisi"
4) "2000"
127.0.0.1:6379> zrange salary 0 -1 withscores # 查看所有key和value
1) "zhaoliu"
2) "1000"
3) "lisi"
4) "2000"
5) "zhangsan"
6) "2500"
127.0.0.1:6379> zrem salary zhaoliu # zrem:移除对应的key、value
(integer) 1
127.0.0.1:6379> zrange salary 0 -1 withscores # 查看zrem后的集合
1) "lisi"
2) "2000"
3) "zhangsan"
4) "2500"
127.0.0.1:6379> zcard salary # zcard:获取集合中的数量
(integer) 2
127.0.0.1:6379> zadd myset 1 hello 2 world 3 haha # zadd 添加值
(integer) 3
127.0.0.1:6379> zcount myset 1 3 # zcount 获取区间有几个值
(integer) 3
127.0.0.1:6379> zcount myset 1 2 # zcount 获取区间有几个值
(integer) 2
zset应用场景:排序 存储成绩,工资
普通消息-1,重要消息2,带权重进行判断
排行榜应用实现,取top N测试
三种特殊数据类型
geospatial地理位置
朋友定位,附近的人,打车距离计算,
Redis的Geo在redis3.2推出
查询经纬度:baidu
geoadd
# getadd 添加地理位置
# 规划:两极无法直接添加,我们一级会下载城市数据,直接通过java程序一次性导入
# 有效的经度从-180度到180度。
# 有效的纬度从-85.05112878度到85.05112878度。
# 当坐标位置超出上述指定范围时,该命令将会返回一个错误。
# 参数 key 值()
127.0.0.1:6379> geoadd china:city 116.40 39.90 beijing
(integer) 1
127.0.0.1:6379> geoadd china:city 121.47 31.23 shanghai
(integer) 1
127.0.0.1:6379> geoadd china:city 106.50 29.53 chongqing 114.05 22.52 shenzhen
(integer) 2
127.0.0.1:6379> geoadd china:city 120.16 30.24 hangzhou 108.96 34.26 xian
(integer) 2
GEOPOS
获得当前定位,一定是一个坐标值
127.0.0.1:6379> GEOPOS china:city beijing # 获取指定城市的经度和纬度
1) 1) "116.39999896287918091"
2) "39.90000009167092543"
127.0.0.1:6379> GEOPOS china:city beijing chongqing
1) 1) "116.39999896287918091"
2) "39.90000009167092543"
2) 1) "106.49999767541885376"
2) "29.52999957900659211"
GEODIST
两个人之间的距离
单位:
m 表示单位为米。
km 表示单位为千米。
mi 表示单位为英里。
ft 表示单位为英尺。
127.0.0.1:6379> GEODIST china:city shanghai beijing # GEODIST 查看距离,shanghai到beijing
"1067378.7564"
127.0.0.1:6379> GEODIST china:city shanghai beijing km # GEODIST 查看距离,shanghai到beijing,单位为km
"1067.3788"
GEORADIUS
以给定的经纬度为中心,找出某一半径内的元素
找附近的人(获取附近的人的地址,定位),通过半径查询
127.0.0.1:6379> GEORADIUS china:city 110 30 1000 km # GEORADIUS 以110,30这个经纬度为中心,寻找1000km范围内的城市
1) "chongqing"
2) "xian"
3) "shenzhen"
4) "hangzhou"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km # GEORADIUS 以110,30这个经纬度为中心,寻找500km范围内的城市
1) "chongqing"
2) "xian"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km withdist # GEORADIUS 以110,30这个经纬度为中心,寻找500km范围内的城市,并显示到这个中心的距离
1) 1) "chongqing"
2) "341.9374"
2) 1) "xian"
2) "483.8340"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km withcoord # GEORADIUS 以110,30这个经纬度为中心,寻找500km范围内的城市,并显示它们的经度纬度 显示他人的定位信息
1) 1) "chongqing"
2) 1) "106.49999767541885376"
2) "29.52999957900659211"
2) 1) "xian"
2) 1) "108.96000176668167114"
2) "34.25999964418929977"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km withcoord withdist count 1 # 筛选出1条指定的结果
1) 1) "chongqing"
2) "341.9374"
3) 1) "106.49999767541885376"
2) "29.52999957900659211"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km withcoord withdist count 2 # 筛选出2条指定的结果
1) 1) "chongqing"
2) "341.9374"
3) 1) "106.49999767541885376"
2) "29.52999957900659211"
2) 1) "xian"
2) "483.8340"
3) 1) "108.96000176668167114"
2) "34.25999964418929977"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km withcoord withdist count 3 # 筛选出3条指定的结果
1) 1) "chongqing"
2) "341.9374"
3) 1) "106.49999767541885376"
2) "29.52999957900659211"
2) 1) "xian"
2) "483.8340"
3) 1) "108.96000176668167114"
2) "34.25999964418929977"
GEORADIUSBYMEMBER
# 找出位于指定元素周围的其它元素
127.0.0.1:6379> GEORADIUSBYMEMBER china:city beijing 1000 km
1) "beijing"
2) "xian"
127.0.0.1:6379> GEORADIUSBYMEMBER china:city shanghai 400 km
1) "hangzhou"
2) "shanghai"
GEOHASH
返回一个或多个位置元素的 Geohash 表示
# 将二维的字符串转为一维的字符串,如果两个字符串越接近,距离越近
127.0.0.1:6379> GEOHASH china:city beijing chongqing
1) "wx4fbxxfke0"
2) "wm5xzrybty0"
GEO底层
底层其实就是Zset,我们可以用Zset命令来操作geo
可以直接使用zset的命令
127.0.0.1:6379> ZRANGE china:city 0 -1 # 使用zset的查看命令,ZRANGE 查看所有数据
1) "chongqing"
2) "xian"
3) "shenzhen"
4) "hangzhou"
5) "shanghai"
6) "beijing"
127.0.0.1:6379> ZREM china:city beijing # 使用zset的删除命令,ZREM 查看所有数据
(integer) 1
127.0.0.1:6379> ZRANGE china:city 0 -1 # 使用zset的查看命令,ZRANGE 查看所有数据,删除成功了
1) "chongqing"
2) "xian"
3) "shenzhen"
4) "hangzhou"
5) "shanghai"
HyperLogLog
做基数统计的算法
类似
A:1,4,5,6,6,7 基数为5
B:1,4,5,6,7 基数为5
基数。计算不重复的
优点,占用内存固定的,2^64不同的元素的技术,只要12k内存。如果要从内存角度比较的话,HyperLogLog首选。
网页的访问量(一个人访问网站多次,还是算一个人)。
传统方式,set保存用户id,然后就可以统计set中元素的的数量作为标准判断。
这个方式保存大量的用户id,就会比较麻烦,目的是为了计数,而不是保存用户id。
0.81%的错误率,统计访问量这种任务,可以忽略不计。
127.0.0.1:6379> PFADD mykey a b c d e f g h i j # PFADD 创建第一组元素
(integer) 1
127.0.0.1:6379> PFCOUNT mykey # PFCOUNT 查看元素基数
(integer) 10
127.0.0.1:6379> PFADD mykey2 i j z x c v b n m # PFADD 创建第二组元素
(integer) 1
127.0.0.1:6379> PFCOUNT mykey2 # PFCOUNT 查看元素基数
(integer) 9
127.0.0.1:6379> PFMERGE mykey3 mykey mykey2 # 合并两组 mykey和mykey2合并为mykey3 并集
OK
127.0.0.1:6379> PFCOUNT mykey3 # 看并集的数量
(integer) 15
如果允许容错,那么一定可以使用HyperLogLog
如果不允许容错,就是用set或者自己的数据类型即可
Bitmap
位存储
只有两个状态的,是否这种
bitmap位图,数据结构,都是操作二进制位来进行记录,就只有0和1两个状态
365天=365bit,1字节=8bit 46个字节左右
模仿一周,七天打卡,第一列数值代表星期,第二列代表是否打卡
127.0.0.1:6379> setbit sign 0 0
(integer) 0
127.0.0.1:6379> setbit sign 1 0
(integer) 0
127.0.0.1:6379> setbit sign 2 0
(integer) 0
127.0.0.1:6379> setbit sign 3 1
(integer) 0
127.0.0.1:6379> setbit sign 4 0
(integer) 0
127.0.0.1:6379> setbit sign 5 0
(integer) 0
127.0.0.1:6379> setbit sign 6 0
(integer) 0
查看某天是否打卡
127.0.0.1:6379> getbit sign 3
(integer) 1
127.0.0.1:6379> getbit sign 6
(integer) 0
统计操作,只有一天是1
127.0.0.1:6379> BITCOUNT sign # 统计这周打卡记录,可以看到是否全勤
(integer) 1
事务
Redis:事物本质,一组命令的集合,一个事务中的所有命令都会被序列化,在事务执行的过程中,会按照顺序执行。
执行多条,命令的时候,
一次性,顺序性,排他性,执行一系列命令,
Redis事务没有隔离级别的概念,所有的命令在事务中并没有被直接执行,只有发起执行命令的时候,才会被执行,Exec
Redid单条命令是保证原子性的,但是事务不保证原子性
Redis事务:
- 开启事务(multi)
- 命令入队(…)
- 执行事务(exec)
正常执行事务
127.0.0.1:6379> MULTI # MULTI 开启事务
OK
127.0.0.1:6379(TX)> set k1 v1 # 执行操作
QUEUED
127.0.0.1:6379(TX)> set k2 v2
QUEUED
127.0.0.1:6379(TX)> get k2
QUEUED
127.0.0.1:6379(TX)> set k3 v3
QUEUED
127.0.0.1:6379(TX)> EXEC # EXEC 执行事务
1) OK
2) OK
3) "v2"
4) OK
放弃事务
127.0.0.1:6379> MULTI # MULTI 开启事务
OK
127.0.0.1:6379(TX)> set k1 v1
QUEUED
127.0.0.1:6379(TX)> set k2 v2
QUEUED
127.0.0.1:6379(TX)> set k4 v4
QUEUED
127.0.0.1:6379(TX)> DISCARD # DISCARD 取消事务
OK
127.0.0.1:6379> get k4 # 被取消了,队列中的命令都不会执行
(nil)
编译性异常(代码有问题,命令报错),事务中所有的命令都不会被执行
127.0.0.1:6379> MULTI # MULTI 开启事务
OK
127.0.0.1:6379(TX)> set k1 v1
QUEUED
127.0.0.1:6379(TX)> set k2 v2
QUEUED
127.0.0.1:6379(TX)> set k3 v3
QUEUED
127.0.0.1:6379(TX)> getset k3 # 错误的命令
(error) ERR wrong number of arguments for 'getset' command
127.0.0.1:6379(TX)> set k4 v4
QUEUED
127.0.0.1:6379(TX)> set k5 v5
QUEUED
127.0.0.1:6379(TX)> EXEC # 执行事务报错
(error) EXECABORT Transaction discarded because of previous errors.
127.0.0.1:6379> keys * # 所有命令都没有被执行
(empty array)
运行时异常(1/0),如果事务队列中存在语法性错误,那么执行命令的时候,其他命令是可以正常执行的,错误命令抛出异常
127.0.0.1:6379> set k1 v1 # 存一个字符串
OK
127.0.0.1:6379> MULTI # MULTI 开启事务
OK
127.0.0.1:6379(TX)> INCR k1 # 对字符串进行+1操作,执行时候会报错
QUEUED
127.0.0.1:6379(TX)> set k2 v2
QUEUED
127.0.0.1:6379(TX)> set k3 v3
QUEUED
127.0.0.1:6379(TX)> get k3
QUEUED
127.0.0.1:6379(TX)> EXEC # EXEC 提交事务
1) (error) ERR value is not an integer or out of range
2) OK
3) OK
4) "v3"
127.0.0.1:6379> keys * # 可以看到除了报错的那个,其它都正常执行了
1) "k3"
2) "k2"
3) "k1"
监控 Watch
- 悲观锁
- 无论做什么都加锁,
- 乐观锁
- 认为什么时候都不会出现问题,所以不会加锁,更新数据的时候去判断一下,在此期间是否有人更改过这个数据
- 获取version
- 更新的时候比较
Redis测监视测试
127.0.0.1:6379> set money 100
OK
127.0.0.1:6379> set out 0
OK
127.0.0.1:6379> watch money # 监视money对象
OK
127.0.0.1:6379> MULTI # 事务正常结束,数据期间没有发生变动,这个时候正常执行成功
OK
127.0.0.1:6379(TX)> DECRBY money 20
QUEUED
127.0.0.1:6379(TX)> INCRBY out 20
QUEUED
127.0.0.1:6379(TX)> EXEC
1) (integer) 80
2) (integer) 20
测试多线程修改值,使用watch可以当做redis乐观锁操作
127.0.0.1:6379> watch money # 监视money
OK
127.0.0.1:6379> MULTI
OK
127.0.0.1:6379(TX)> DECRBY money 10
QUEUED
127.0.0.1:6379(TX)> INCRBY out 10
QUEUED
127.0.0.1:6379(TX)> exec # 执行之前,另外一个线程修改了这个值,就会导致执行失败
(nil)
如果执行失败,获取最新值就好
Jedis
用java来操作Redis
测试
- 导入依赖
<dependencies>
<!-- jedis -->
<!-- https://mvnrepository.com/artifact/redis.clients/jedis -->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>3.2.0</version>
</dependency>
<!-- fastjson -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.62</version>
</dependency>
</dependencies>
- 编码测试
- 连接数据库
连接超时
https://blog.csdn.net/a3562323/article/details/123716175 - 操作命令
- 断开连接
public static void main(String[] args) {
Jedis jedis=new Jedis("192.168.0.156",6379);
System.out.println(jedis.ping());
}
常用API
基本方法
Jedis jedis=new Jedis("192.168.0.156",6379);
System.out.println("清空数据:"+jedis.flushDB());
System.out.println("判断某个键是否存在:"+jedis.exists("username"));
System.out.println("新增键值对\"username\",\"zhangsan\""+jedis.set("username","zhangsan"));
System.out.println("新增键值对\"password\",\"123456\""+jedis.set("password","123456"));
System.out.println("系统中所有的键:"+jedis.keys("*"));
System.out.println("删除键:password"+jedis.del("password"));
System.out.println("判断键password是否存在:"+jedis.exists("password"));
System.out.println("查看username所存储的数据类型:"+jedis.type("username"));
System.out.println("随机返回一个key:"+jedis.randomKey());
System.out.println("重命名username为user"+jedis.rename("username","user"));
System.out.println("查看重命名后的user:"+jedis.get("user"));
System.out.println("按索引查询:"+jedis.select(0));
System.out.println("删除当前数据库中的所有key"+jedis.flushDB());
System.out.println("当前数据库中的key数量:"+jedis.dbSize());
System.out.println("删除所有数据库的key"+jedis.flushAll());
jedis事务
Jedis jedis = new Jedis("192.168.0.156", 6379);
jedis.flushDB();
JSONObject jsonObject = new JSONObject();
jsonObject.put("hello","world");
jsonObject.put("name","zhangsan");
//开启事务
Transaction multi = jedis.multi();
String result = jsonObject.toJSONString();
try {
multi.set("user1",result);
multi.set("user2",result);
int i=1/0;
multi.exec(); //执行事务
} catch (Exception e) {
multi.discard(); //异常就放弃事务
e.printStackTrace();
}finally {
System.out.println(jedis.get("user1"));
System.out.println(jedis.get("user2"));
jedis.close();
}
springboot整合
springboot操作数据:spring-data jpa jdbc mongodb redis
spring-data是和springboot齐名的项目,
整合
springboot2.x之后,原来的jedis被替换为了lettuce
jedis:采用直连,多线程操作是不安全的,如果想要避免不安全,使用jedis pool连接池,BIO
lettuce:采用netty,实例可以在多个线程中进行共享,不存在线程不安全的情况,可以减少线程数据了,NIO
源码分析
@Bean
@ConditionalOnMissingBean( //@ConditionalOnMissingBean,如果不存在就生效,可以自己定义一个redisTemplate,来替换默认的
name = {"redisTemplate"}
)
@ConditionalOnSingleCandidate(RedisConnectionFactory.class)
public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
//默认的RedisTemplate,没有过多的设置,Redis对象都是需要序列化的
//两个泛型都是Object,我们使用需要强转<String,Object>
RedisTemplate<Object, Object> template = new RedisTemplate();
template.setConnectionFactory(redisConnectionFactory);
return template;
}
@Bean
@ConditionalOnMissingBean //string是redis中最常用的类型,所以单独提取出来一个bean
@ConditionalOnSingleCandidate(RedisConnectionFactory.class)
public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory redisConnectionFactory) {
return new StringRedisTemplate(redisConnectionFactory);
}
整合测试
- 导入依赖
<!-- 操作redis -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
- 配置连接
spring.redis.host=192.168.0.156
spring.redis.port=6379
#如果有用户名和密码,用户和密码是写在一起的,分开写Unable to connect to Redis异常
spring.redis.password=zhangsan:123456
- 测试
@Test
void contextLoads() {
//opsForValue 操作字符串 类似String
//opsForList 操作List
//opsForSet 操作set
//opsForGeo 操作geo
//.....
//除了基本的操作,常用的方法都可以通过redisTemplate操作,比如事务和基本的CRUD,
//获取redis的连接对象
//RedisConnection connection = redisTemplate.getConnectionFactory().getConnection();
//connection.flushDb();
//connection.flushAll();
redisTemplate.opsForValue().set("mykey","张三");
System.out.println(redisTemplate.opsForValue().get("mykey"));
}
直接存对象提示需要序列化
Redis工具类
package com.wzw.redis.utils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;
import java.util.Collection;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;
@Component
public class RedisUtil {
@Autowired
private RedisTemplate<String, Object> redisTemplate;
/****************** common start ****************/
/**
* 指定缓存失效时间
* @param key 键
* @param time 时间(秒)
* @return
*/
public boolean expire(String key, long time) {
try {
if (time > 0) {
redisTemplate.expire(key, time, TimeUnit.SECONDS);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 根据key 获取过期时间
* @param key 键 不能为null
* @return 时间(秒) 返回0代表为永久有效
*/
public long getExpire(String key) {
return redisTemplate.getExpire(key, TimeUnit.SECONDS);
}
/**
* 判断key是否存在
* @param key 键
* @return true 存在 false不存在
*/
public boolean hasKey(String key) {
try {
return redisTemplate.hasKey(key);
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 删除缓存
* @param key 可以传一个值 或多个
*/
@SuppressWarnings("unchecked")
public void del(String... key) {
if (key != null && key.length > 0) {
if (key.length == 1) {
redisTemplate.delete(key[0]);
} else {
redisTemplate.delete((Collection<String>) CollectionUtils.arrayToList(key));
}
}
}
/****************** common end ****************/
/****************** String start ****************/
/**
* 普通缓存获取
* @param key 键
* @return 值
*/
public Object get(String key) {
return key == null ? null : redisTemplate.opsForValue().get(key);
}
/**
* 普通缓存放入
* @param key 键
* @param value 值
* @return true成功 false失败
*/
public boolean set(String key, Object value) {
try {
redisTemplate.opsForValue().set(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 普通缓存放入并设置时间
* @param key 键
* @param value 值
* @param time 时间(秒) time要大于0 如果time小于等于0 将设置无限期
* @return true成功 false 失败
*/
public boolean set(String key, Object value, long time) {
try {
if (time > 0) {
redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
} else {
set(key, value);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 递增
* @param key 键
* @param delta 要增加几(大于0)
* @return
*/
public long incr(String key, long delta) {
if (delta < 0) {
throw new RuntimeException("递增因子必须大于0");
}
return redisTemplate.opsForValue().increment(key, delta);
}
/**
* 递减
* @param key 键
* @param delta 要减少几(小于0)
* @return
*/
public long decr(String key, long delta) {
if (delta < 0) {
throw new RuntimeException("递减因子必须大于0");
}
return redisTemplate.opsForValue().increment(key, -delta);
}
/****************** String end ****************/
/****************** Map start ****************/
/**
* HashGet
* @param key 键 不能为null
* @param item 项 不能为null
* @return 值
*/
public Object hget(String key, String item) {
return redisTemplate.opsForHash().get(key, item);
}
/**
* 获取hashKey对应的所有键值
* @param key 键
* @return 对应的多个键值
*/
public Map<Object, Object> hmget(String key) {
return redisTemplate.opsForHash().entries(key);
}
/**
* HashSet
* @param key 键
* @param map 对应多个键值
* @return true 成功 false 失败
*/
public boolean hmset(String key, Map<String, Object> map) {
try {
redisTemplate.opsForHash().putAll(key, map);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* HashSet 并设置时间
* @param key 键
* @param map 对应多个键值
* @param time 时间(秒)
* @return true成功 false失败
*/
public boolean hmset(String key, Map<String, Object> map, long time) {
try {
redisTemplate.opsForHash().putAll(key, map);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 向一张hash表中放入数据,如果不存在将创建
* @param key 键
* @param item 项
* @param value 值
* @return true 成功 false失败
*/
public boolean hset(String key, String item, Object value) {
try {
redisTemplate.opsForHash().put(key, item, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 向一张hash表中放入数据,如果不存在将创建
* @param key 键
* @param item 项
* @param value 值
* @param time 时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间
* @return true 成功 false失败
*/
public boolean hset(String key, String item, Object value, long time) {
try {
redisTemplate.opsForHash().put(key, item, value);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 删除hash表中的值
* @param key 键 不能为null
* @param item 项 可以使多个 不能为null
*/
public void hdel(String key, Object... item) {
redisTemplate.opsForHash().delete(key, item);
}
/**
* 判断hash表中是否有该项的值
* @param key 键 不能为null
* @param item 项 不能为null
* @return true 存在 false不存在
*/
public boolean hHasKey(String key, String item) {
return redisTemplate.opsForHash().hasKey(key, item);
}
/**
* hash递增 如果不存在,就会创建一个 并把新增后的值返回
* @param key 键
* @param item 项
* @param by 要增加几(大于0)
* @return
*/
public double hincr(String key, String item, long by) {
return redisTemplate.opsForHash().increment(key, item, by);
}
/**
* hash递减
* @param key 键
* @param item 项
* @param by 要减少记(小于0)
* @return
*/
public double hdecr(String key, String item, long by) {
return redisTemplate.opsForHash().increment(key, item, -by);
}
/****************** Map end ****************/
/****************** Set start ****************/
/**
* 根据key获取Set中的所有值
* @param key 键
* @return
*/
public Set<Object> sGet(String key) {
try {
return redisTemplate.opsForSet().members(key);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 根据value从一个set中查询,是否存在
* @param key 键
* @param value 值
* @return true 存在 false不存在
*/
public boolean sHasKey(String key, Object value) {
try {
return redisTemplate.opsForSet().isMember(key, value);
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将数据放入set缓存
* @param key 键
* @param values 值 可以是多个
* @return 成功个数
*/
public long sSet(String key, Object... values) {
try {
return redisTemplate.opsForSet().add(key, values);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 将set数据放入缓存
* @param key 键
* @param time 时间(秒)
* @param values 值 可以是多个
* @return 成功个数
*/
public long sSetAndTime(String key, long time, Object... values) {
try {
Long count = redisTemplate.opsForSet().add(key, values);
if (time > 0)
expire(key, time);
return count;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 获取set缓存的长度
* @param key 键
* @return
*/
public long sGetSetSize(String key) {
try {
return redisTemplate.opsForSet().size(key);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 移除值为value的
* @param key 键
* @param values 值 可以是多个
* @return 移除的个数
*/
public long setRemove(String key, Object... values) {
try {
Long count = redisTemplate.opsForSet().remove(key, values);
return count;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/****************** Set end ****************/
/****************** List start ****************/
/**
* 获取list缓存的内容
* @param key 键
* @param start 开始
* @param end 结束 0 到 -1代表所有值
* @return
*/
public List<Object> lGet(String key, long start, long end) {
try {
return redisTemplate.opsForList().range(key, start, end);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 获取list缓存的长度
* @param key 键
* @return
*/
public long lGetListSize(String key) {
try {
return redisTemplate.opsForList().size(key);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 通过索引 获取list中的值
* @param key 键
* @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推
* @return
*/
public Object lGetIndex(String key, long index) {
try {
return redisTemplate.opsForList().index(key, index);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 将list放入缓存
* @param key 键
* @param value 值
* @return
*/
public boolean lSet(String key, Object value) {
try {
redisTemplate.opsForList().rightPush(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
* @param key 键
* @param value 值
* @param time 时间(秒)
* @return
*/
public boolean lSet(String key, Object value, long time) {
try {
redisTemplate.opsForList().rightPush(key, value);
if (time > 0)
expire(key, time);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
* @param key 键
* @param value 值
* @return
*/
public boolean lSet(String key, List<Object> value) {
try {
redisTemplate.opsForList().rightPushAll(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
* @param key 键
* @param value 值
* @param time 时间(秒)
* @return
*/
public boolean lSet(String key, List<Object> value, long time) {
try {
redisTemplate.opsForList().rightPushAll(key, value);
if (time > 0)
expire(key, time);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 根据索引修改list中的某条数据
* @param key 键
* @param index 索引
* @param value 值
* @return
*/
public boolean lUpdateIndex(String key, long index, Object value) {
try {
redisTemplate.opsForList().set(key, index, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 521
* 移除N个值为value
* 522
*
* @param key 键
* 523
* @param count 移除多少个
* 524
* @param value 值
* 525
* @return 移除的个数
* 526
*/
public long lRemove(String key, long count, Object value) {
try {
Long remove = redisTemplate.opsForList().remove(key, count, value);
return remove;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
}
Redis.conf
单位
配置文件的大小写是不敏感的
包含includes
可以通过include
引入多个配置文件
网络NETWORK
bind 127.0.0.1 # Ip,如果要远程访问,可以改成*通配,或者当前的Ip
protected-mode no # 保护模式
port 6379 # 端口号
通用GENERAL
daemonize yes # 以守护进程的方式运行,默认no,如果退出了,进程就结束了,需要手动改为yes
pidfile /var/run/redis_6379.pid # 如果守护进程以后台的方式运行,就需要指定一个pid文件
loglevel notice # 日志级别
logfile "" # 日志的文件名
databases 16 # 数据库的数量,默认有16个数据库
always-show-logo no # 是否总是显示LOGO
快照SNAPSHOTTING
持久化,在规定的时间内执行多少次操作,则会持久化,
redis是一个内存数据库,断电即失,如果不持久化,无法找回数据了
save 3600 1 # 3600s内,至少一个key进行了操作,就持久化
save 300 100 # 300s内,至少100个key进行了操作,就持久化
save 60 10000 # 60s内,至少10000个key进行了操作,就持久化
stop-writes-on-bgsave-error yes # 持久化出现错误是否继续执行
rdbcompression yes # 是否压缩RDB文件,会消耗一些cpu资源
rdbchecksum yes # 保存rdb文件的时候,是否进行错误校验
dir ./ # rdb保存的位置,当前目录下
复制REPLICATION
安全SECURITY
设置redis的密码,默认没有密码
127.0.0.1:6379> config get requirepass # 获取redis密码
1) "requirepass"
2) ""
127.0.0.1:6379> config set requirepass "123456" # 设置redis的密码
OK
127.0.0.1:6379> config get requirepass # 获取redis密码
1) "requirepass"
2) "123456"
127.0.0.1:6379> ping # 没有登录
(error) NOAUTH Authentication required.
127.0.0.1:6379> auth 123456 # 登录
OK
127.0.0.1:6379> ping
PONG
限制CLIENTS
maxclients 10000 # 能连接redis的最大客户端数量
maxmemory <bytes> # redis的最大内存设置
maxmemory-policy noeviction # 内存达到上限的处理策略
设置过期的六种策略
1、volatile-lru:只对设置了过期时间的key进行LRU(默认值)
2、allkeys-lru : 删除lru算法的key
3、volatile-random:随机删除即将过期key
4、allkeys-random:随机删除
5、volatile-ttl : 删除即将过期的
6、noeviction : 永不过期,返回错误
APPEND ONLY MODE
AOF配置
appendonly no # 默认不开启AOF,默认使用的RDB持久化,大部分情况下,RDB就够用了
appendfilename "appendonly.aof" # 持久化文件的名字
# appendfsync always # 每次修改值都会sync,消耗性能
appendfsync everysec # 每一秒执行一次sync,可能会丢失这1S的数据
# appendfsync no # 不执行sync,这个时候系统自己同步数据,速度最快
Redis持久化
Redis 是内存数据库,如果不将内存中的数据库状态保存到磁盘,那么一旦服务器进程退出,服务器中的数据库状态也会消失。所以 Redis 提供了持久化功能!
RDB
什么是RDB?
在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快 照文件直接读到内存里。
Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到一个临时文件中,待持久化过程 都结束了,再用这个临时文件替换上次持久化好的文件。整个过程中,主进程是不进行任何IO操作的。 这就确保了极高的性能。如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那 RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。
我们默认的就是RDB,一般情况下不需要修改这个配置!
RDB保存的文件默认是dump.rdb
都是在我们的配置文件中的Snapshot快照模块中进行配置的!
触发机制
-
save的规则满足的情况下,会自动触发RDB规则,生成我们的RDB文件!
-
执行flushall命令,也会触发我们的RDB规则,生成我们的RDB文件!
-
退出redis,也会产生RDB文件!
备份就自动生成一个dump.rdb文件
如果恢复RDB文件
4. 只需要将RDB文件放到redis的启动目录下就可以了,redis启动的时候会自动检查 dump.rdb文件,恢复其中的数据!
- 查看 dump.rdb文件存放的位置
127.0.0.1:6379> config get dir
1) "dir"
2) "/usr/local/bin" # 如果在这个目录下存在 dump.rdb 文件,那redis启动就会恢复其中的数据!
几乎它自己默认的配置就够用了,但是我们还是需要去学习!
优点:
-
适合大规模的数据恢复!
-
对数据的完整性要求不高! (你比如设置60s内修改1000次才生成rdb文件,但是59秒redis服务器就宕机了,这样数据就没了)
缺点:
-
需要一定的时间间隔进行操作!如果redis意外宕机了,这个最后一次修改的数据就没有了!
-
fork子进程的时候,会占用一定的内存空间!
AOF
将我们的写入命令都记录下来,history,恢复的时候就把这个文件全部再执行一遍!
以日志的形式来记录每个写操作,将Redis执行过的所有指令记录下来(读操作不记录),只许追加文件 但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis重启的话就根据日志文件 的内容将写指令从前到后执行一次以完成数据的恢复工作!
AOF保存的是appendonly.aof 文件
默认是不开启的,我们需要手动进行配置!我们只需要将appendonly 改为yes就开启了AOF!
修复AOF文件
如果AOF文件有错误,这个时候redis是启动不起来的,我们需要修复这个AOF文件
重写规则
AOF默认就是文件的无限追加,文件会越来越大!
如果某个时间点的AOF文件大于64M,太大了!它就会fork一个新的进程来将我们的文件进行重写!
优点和缺点
appendonly no # 默认不开启AOF,默认使用的RDB持久化,大部分情况下,RDB就够用了
appendfilename "appendonly.aof" # 持久化文件的名字
# appendfsync always # 每次修改值都会sync,消耗性能
appendfsync everysec # 每一秒执行一次sync,可能会丢失这1S的数据
# appendfsync no # 不执行sync,这个时候系统自己同步数据,速度最快
# rewrite 重写
优点:
1.每一次修改都同步,文件完整性
2.每秒同步一次,可能会丢失一秒的数据
3.从不同步,效率最高
缺点:
1.相对于数据文件来说,AOF远远大于RDB,恢复的速度也比RDB慢!
2.AOF运行效率也要比RDB慢,所以说我们redis默认的配置就是rdb持久化!
扩展
1、RDB 持久化方式能够在指定的时间间隔内对你的数据进行快照存储
2、AOF 持久化方式记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始 的数据,AOF命令以Redis 协议追加保存每次写的操作到文件末尾,Redis还能对AOF文件进行后台重 写,使得AOF文件的体积不至于过大。
3、只做缓存,如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化
4、同时开启两种持久化方式 在这种情况下,当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF 文件保存的数据集要比RDB文件保存的数据集要完整。 RDB 的数据不实时,同时使用两者时服务器重启也只会找AOF文件,那要不要只使用AOF呢?作者 建议不要,因为RDB更适合用于备份数据库(AOF在不断变化不好备份),快速重启,而且不会有 AOF可能潜在的Bug,留着作为一个万一的手段。
5、性能建议 因为RDB文件只用作后备用途,建议只在Slave上持久化RDB文件,而且只要15分钟备份一次就够 了,只保留 save 900 1 这条规则。 如果Enable AOF ,好处是在最恶劣情况下也只会丢失不超过两秒数据,启动脚本较简单只load自 己的AOF文件就可以了,代价一是带来了持续的IO,二是AOF rewrite 的最后将 rewrite 过程中产 生的新数据写到新文件造成的阻塞几乎是不可避免的。只要硬盘许可,应该尽量减少AOF rewrite 的频率,AOF重写的基础大小默认值64M太小了,可以设到5G以上,默认超过原大小100%大小重 写可以改到适当的数值。 如果不Enable AOF ,仅靠 Master-Slave Repllcation 实现高可用性也可以,能省掉一大笔IO,也 减少了rewrite时带来的系统波动。代价是如果Master/Slave 同时宕机,会丢失十几分钟的数据, 启动脚本也要比较两个 Master/Slave 中的 RDB文件,载入较新的那个,微博就是这种架构。
RBD+AOF混合
Redis4.0版本开始支持混合持久化,因为RDB虽然加载快但是存在数据丢失,AOF数据安全但是加载缓慢。Redis4.0以上版本默认开启
aof-use-rdb-preamble yes
开启混合持久化之后:appendonlydir文件下存在一个rdb文件与一个aof文件
推荐两者均开启
- 如果对数据不敏感,可以选单独用RDB
- 不建议单独用AOF,因为可能会出现Bug
- 如果只是做纯内存缓存,可以都不用
Redis发布订阅
Redis发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息。如微博,微信,关注系统,Redis客户端可以订阅任意数量的频道。
订阅/发布消息图:
第一个:消息发送者。第二个:频道。第三个:消息订阅者。
下图展示了频道channel1,以及订阅这个频道的三个客户端–client2,client5和client1之间的关系:
当有新消息通过PUBLIST命令发送给频道channel1时,这个消息就会被发送给订阅它的三个客户端:
命令
订阅端;
127.0.0.1:6379> SUBSCRIBE wzw # SUBSCRIBE 订阅频道——wzw
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "wzw"
3) (integer) 1
# 等待读取推送的信息
1) "message" # 消息
2) "wzw" # 来自哪个频道
3) "haha" # 消息内容
1) "message" # 消息
2) "wzw" # 来自哪个频道
3) "hello" # 消息内容
发送端:
127.0.0.1:6379> PUBLISH wzw haha # PUBLISH 发布消息到频道
(integer) 1
127.0.0.1:6379> PUBLISH wzw hello # PUBLISH 发布消息到频道
(integer) 1
原理
Redis是使用c实现的,通过分析Redis源码里面的pubsub.c文件,了解发布和订阅机制的底层实现,籍此加深对Redis的理解。
Redis通过publish,subscribe和psubscribe等命令实现发布和订阅功能。
通过subscribe命令订阅某频道后,Redis-server里维护了一个字典,字典的键就是一个个频道,而字典的值则是一个链表,链表中保存了所有订阅这个频道的客户端。subscribe命令的关键,就是将客户端添加到给定频道的订阅链表中。
通过publish命令向订阅者发送消息,redis-server会使用给定的频道作为键,在它所维护的频道字典中查找记录了订阅这个频道的所有客户端的链表,遍历这个链表,将消息发布给所有订阅者。
pub/sub从字面上理解就是发布(publish)与订阅(subscribe),在Redis中,可以设定对某一个key值进行消息发布及消息订阅,当一个key值上进行了消息发布后,所有订阅它的客户端都会收到相应的消息。这一功能最明显的用法就是用作实时消息系统,比如:普通的即时聊天,群聊等功能。
使用场景:
实时消息系统
实时聊天(频道当做聊天室,将信息回显给所有人即可)
订阅,关注系统都是可以的
稍微复杂的场景我们就会使用 消息中间件MQ
主从复制
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。
主从复制的作用
主从复制的作用主要包括:
数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。
一般来说,要将Redis运用于工程项目中,只使用一台Redis是万万不能的(宕机),原因如下:
1、从结构上,单个Redis服务器会发生单点故障,并且一台服务器需要处理所有的请求负载,压力较大;
2、从容量上,单个Redis服务器内存容量有限,就算一台Redis服务器内存容量为256G,也不能将所有内存用作Redis存储内存,一般来说,单台Redis最大使用内存不应该超过20G。
电商网站上的商品,一般都是一次上传,无数次浏览的,说专业点也就是"多读少写"。
对于这种场景,我们可以使如下这种架构:
主从复制,读写分离! 80% 的情况下都是在进行读操作!减缓服务器的压力!架构中经常使用! 一主二从!
只要在公司中,主从复制就是必须要使用的,因为在真实的项目中不可能单机使用Redis!
环境配置
只配置从库,不用配置主库
127.0.0.1:6379> info replication # 查看当前库的信息
# Replication
role:master # 角色 master
connected_slaves:0 # 从机数量
master_failover_state:no-failover
master_replid:6ca208fa93733255eb4266a99fb7c6199343ab1d
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0
准备三个redis服务
- 准备配置文件
# 准备三个配置文件,到时候单独启动
[root@localhost backupfile]# cp redis.conf redis79.conf
[root@localhost backupfile]# cp redis.conf redis80.conf
[root@localhost backupfile]# cp redis.conf redis81.conf
- 修改配置文件
- 79.config
# 端口不用改
port 6379
# pid文件名不用改
pidfile /var/run/redis_6379.pid
# 修改日志文件名
logfile "6379.log"
# dump名修改
dbfilename dump6379.rdb
- 80.config
# 端口修改
port 6380
# pid文件名修改
pidfile /var/run/redis_6380.pid
# 修改日志文件名
logfile "6380.log"
# dump名修改
dbfilename dump6380.rdb
- 81.config
# 端口修改
port 6381
# pid文件名修改
pidfile /var/run/redis_6381.pid
# 修改日志文件名
logfile "6381.log"
# dump名修改
dbfilename dump6381.rdb
- 启动三个服务
[root@localhost bin]# redis-server backupfile/redis79.conf
[root@localhost bin]# redis-server backupfile/redis80.conf
[root@localhost bin]# redis-server backupfile/redis81.conf
启动成功
一主二从
默认情况下,每台Redis服务器都是主节点,一般情况下,只需要配置从机就可以了
一主(79)二从(80,81)
127.0.0.1:6380> SLAVEOF 127.0.0.1 6379 # 把哪个服务当做主
OK
127.0.0.1:6380> info replication
# Replication
role:slave # 当前角色试从机
master_host:127.0.0.1 # 主机的信息
master_port:6379
master_link_status:up
master_last_io_seconds_ago:8
master_sync_in_progress:0
slave_read_repl_offset:70
slave_repl_offset:70
slave_priority:100
slave_read_only:1
replica_announced:1
connected_slaves:0
master_failover_state:no-failover
master_replid:8ddcfc319d6c3403ad89b81c0ee68ea8708eb364
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:70
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:70
#在主机中查看
127.0.0.1:6379> info replication
# Replication
role:master
connected_slaves:1 # 多了从机的配置
slave0:ip=127.0.0.1,port=6380,state=online,offset=182,lag=0
master_failover_state:no-failover
master_replid:8ddcfc319d6c3403ad89b81c0ee68ea8708eb364
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:182
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:182
80和81都配置完,就会有两个从机的信息
真实的配置应该在配置文件中配置,配置文件中配置的是永久的;这里使用命令的方式配置,是暂时的
细节
主机可以写值,从机不能写主机中的所有信息和数据,都会自动被从机保存
主机可以写
从机只能读,如果从机写,就会报错
测试:主机断开连接,从机依旧连接到主机,但是没有写操作,如果主机重新上线,从机依旧可以继续获取主机写的信息
如果是使用命令行设置的从机,掉线后重启,它的身份会变回主机,但是只要变回从机,数据会立刻从主机中获取到
复制原理
Slave 启动成功连接到 master 后会发送一个sync同步命令;
Master 接到命令,启动后台的存盘进程,同时收集所有接收到的用于修改数据集命令,在后台进程执行完毕之后,master将传送整个数据文件到slave,并完成一次完全同步。
全量复制:slave服务在接收到数据库文件数据后,将其存盘并加载到内存中。
增量复制:Master 继续将新的所有收集到的修改命令依次传给slave,完成同步
但是只要是重新连接master,一次完全同步(全量复制)将被自动执行! 我们的数据一定可以在从机中看到!
哨兵模式
自动选举
-
主从切换技术的方法是:当主服务器宕机后,需要手动把一台从服务器切换为主服务器,这就需要人工干预,费事费力,还会造成一段时间内服务不可用。这不是一种推荐的方式,更多时候,我们优先考虑哨兵模式。
-
哨兵模式是一种特殊的模式,首先Redis提供了哨兵的命令,哨兵是一个独立的进程,作为进程,它会独立运行。其原理是哨兵通过发送命令,等待Redis服务器响应,从而监控运行的多个Redis实例。
-
这里的哨兵有两个作用
- 通过发送命令,让Redis服务器返回监控其运行状态,包括主服务器和从服务器。当哨兵监测到master宕机,会自动将slave切换成master,然后通过发布订阅模式通知其他的从服务器,修改配置文件,让它们切换主机。
- 假设主服务器宕机,哨兵1先检测到这个结果,系统并不会马上进行failover过程,仅仅是哨兵1主观的认为主服务器不可用,这个现象成为主观下线。当后面的哨兵也检测到主服务器不可用,并且数量达到一定值时,那么哨兵之间就会进行一次投票,投票的结果由一个哨兵发起,进行failover操作。切换成功后,就会通过发布订阅模式,让各个哨兵把自己监控的从服务器实现切换主机,这个过程称为客观下线。这样对于客户端而言,一切都是透明的。
- 通过发送命令,让Redis服务器返回监控其运行状态,包括主服务器和从服务器。当哨兵监测到master宕机,会自动将slave切换成master,然后通过发布订阅模式通知其他的从服务器,修改配置文件,让它们切换主机。
测试
- 配置哨兵配置文件sentimel.conf
# sentinel monitor 被监控的名称 host port 1
sentinel monitor myredis 127.0.0.1 6379 1
后面的这个数字1,代表主机挂了,slave投票看让谁接替成为主机,票数最多的,就会成为主机 。
- 启动哨兵
[root@localhost bin]# redis-sentinel backupfile/sentimel.conf
48822:X 29 Mar 2022 10:27:18.310 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
48822:X 29 Mar 2022 10:27:18.310 # Redis version=6.2.6, bits=64, commit=00000000, modified=0, pid=48822, just started
48822:X 29 Mar 2022 10:27:18.310 # Configuration loaded
48822:X 29 Mar 2022 10:27:18.310 * Increased maximum number of open files to 10032 (it was originally set to 1024).
48822:X 29 Mar 2022 10:27:18.310 * monotonic clock: POSIX clock_gettime
_._
_.-``__ ''-._
_.-`` `. `_. ''-._ Redis 6.2.6 (00000000/0) 64 bit
.-`` .-```. ```\/ _.,_ ''-._
( ' , .-` | `, ) Running in sentinel mode
|`-._`-...-` __...-.``-._|'` _.-'| Port: 26379
| `-._ `._ / _.-' | PID: 48822
`-._ `-._ `-./ _.-' _.-'
|`-._`-._ `-.__.-' _.-'_.-'|
| `-._`-._ _.-'_.-' | https://redis.io
`-._ `-._`-.__.-'_.-' _.-'
|`-._`-._ `-.__.-' _.-'_.-'|
| `-._`-._ _.-'_.-' |
`-._ `-._`-.__.-'_.-' _.-'
`-._ `-.__.-' _.-'
`-._ _.-'
`-.__.-'
48822:X 29 Mar 2022 10:27:18.311 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128.
48822:X 29 Mar 2022 10:27:18.313 # Sentinel ID is 1a33c8332cbc5dd0456a251ae0b1453d6948ef7f
48822:X 29 Mar 2022 10:27:18.313 # +monitor master myredis 127.0.0.1 6379 quorum 1
48822:X 29 Mar 2022 10:27:18.315 * +slave slave 127.0.0.1:6381 127.0.0.1 6381 @ myredis 127.0.0.1 6379
48822:X 29 Mar 2022 10:27:18.316 * +slave slave 127.0.0.1:6380 127.0.0.1 6380 @ myredis 127.0.0.1 6379
如果主节点断开了,就在从机中随机选取一个服务器作为主机
- 哨兵日志
79下线了切换为了80为主 - 哨兵模式
如果主机重新上线,只能作为现有主机的从机
优点
- 哨兵集群,基于主从复制模式,所有主从配置优点,它全有
- 主从可以切换,故障可以转移,系统的可用性就更好
- 哨兵模式就是主从模式的升级,手动到自动
缺点
- Redis 不容易在线扩容,集群容量一旦到达上限,在线扩容就十分麻烦。
- 实现哨兵模式的配置繁琐。
哨兵模式的全部配置
# Example sentinel.conf
# 哨兵sentinel实例运行的端口 默认26379
port 26379
# 哨兵sentinel的工作目录
dir /tmp
# 哨兵sentinel监控的redis主节点的 ip port
# master-name 可以自己命名的主节点名字 只能由字母A-z、数字0-9 、这三个字符".-_"组成。
# quorum 配置多少个sentinel哨兵统一认为master主节点失联 那么这时客观上认为主节点失联了
# sentinel monitor <master-name> <ip> <redis-port> <quorum>
sentinel monitor mymaster 127.0.0.1 6379 2
# 当在Redis实例中开启了requirepass foobared 授权密码 这样所有连接Redis实例的客户端都要提供密码
# 设置哨兵sentinel 连接主从的密码 注意必须为主从设置一样的验证密码
# sentinel auth-pass <master-name> <password>
sentinel auth-pass mymaster MySUPER--secret-0123passw0rd
# 指定多少毫秒之后 主节点没有应答哨兵sentinel 此时 哨兵主观上认为主节点下线 默认30秒
# sentinel down-after-milliseconds <master-name> <milliseconds>
sentinel down-after-milliseconds mymaster 30000
# 这个配置项指定了在发生failover主备切换时最多可以有多少个slave同时对新的master进行 同步,这个数字越小,完成failover所需的时间就越长,但是如果这个数字越大,就意味着越 多的slave因为replication而不可用。可以通过将这个值设为 1 来保证每次只有一个slave 处于不能处理命令请求的状态。
# sentinel parallel-syncs <master-name> <numslaves>
sentinel parallel-syncs mymaster 1
# 故障转移的超时时间 failover-timeout 可以用在以下这些方面:
#1. 同一个sentinel对同一个master两次failover之间的间隔时间。
#2. 当一个slave从一个错误的master那里同步数据开始计算时间。直到slave被纠正为向正确的master那里同步数据时。
#3.当想要取消一个正在进行的failover所需要的时间。
#4.当进行failover时,配置所有slaves指向新的master所需的最大时间。不过,即使过了这个超时,slaves依然会被正确配置为指向master,但是就不按parallel-syncs所配置的规则来了
# 默认三分钟
# sentinel failover-timeout <master-name> <milliseconds>
sentinel failover-timeout mymaster 180000
# SCRIPTS EXECUTION
#配置当某一事件发生时所需要执行的脚本,可以通过脚本来通知管理员,例如当系统运行不正常时发邮件通知相关人员。
#对于脚本的运行结果有以下规则:
#若脚本执行后返回1,那么该脚本稍后将会被再次执行,重复次数目前默认为10
#若脚本执行后返回2,或者比2更高的一个返回值,脚本将不会重复执行。
#如果脚本在执行过程中由于收到系统中断信号被终止了,则同返回值为1时的行为相同。
#一个脚本的最大执行时间为60s,如果超过这个时间,脚本将会被一个SIGKILL信号终止,之后重新执行。
#通知型脚本:当sentinel有任何警告级别的事件发生时(比如说redis实例的主观失效和客观失效等等),将会去调用这个脚本,这时这个脚本应该通过邮件,SMS等方式去通知系统管理员关于系统不正常运行的信息。调用该脚本时,将传给脚本两个参数,一个是事件的类型,一个是事件的描述。如果sentinel.conf配置文件中配置了这个脚本路径,那么必须保证这个脚本存在于这个路径,并且是可执行的,否则sentinel无法正常启动成功。
#通知脚本
# shell编程
# sentinel notification-script <master-name> <script-path>
sentinel notification-script mymaster /var/redis/notify.sh
# 客户端重新配置主节点参数脚本
# 当一个master由于failover而发生改变时,这个脚本将会被调用,通知相关的客户端关于master地址已经发生改变的信息。
# 以下参数将会在调用脚本时传给脚本:
# <master-name> <role> <state> <from-ip> <from-port> <to-ip> <to-port>
# 目前<state>总是“failover”,
# <role>是“leader”或者“observer”中的一个。
# 参数 from-ip, from-port, to-ip, to-port是用来和旧的master和新的master(即旧的slave)通信的
# 这个脚本应该是通用的,能被多次调用,不是针对性的。
# sentinel client-reconfig-script <master-name> <script-path>
sentinel client-reconfig-script mymaster /var/redis/reconfig.sh # 一般都是由运维来配置!
Redis缓冲穿透和雪崩
Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面。但同时,它也带来了一些问题。其中,最要害的问题,就是数据的一致性问题,从严格意义上讲,这个问题无解。如果对数据的一致性要求很高,那么就不能使用缓存。
另外的一些典型问题就是,缓存穿透、缓存雪崩和缓存击穿。目前,业界也都有比较流行的解决方案。
缓存穿透(数据查不到)
概念
缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于是向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中(秒杀!),于是都去请求了持久层数据库。这会给持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。
解决方案
(1)布隆过滤器
布隆过滤器是一种数据结构,对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力;
(2)缓存空对象
当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源;
但是这种方法会存在两个问题:
1、如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键;
2、即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响。
缓存击穿(量太大,缓存过期!)
这里需要注意和缓存穿透的区别,缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞。
当某个key在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访问数据库来查询最新数据,并且回写缓存,会导使数据库瞬间压力过大。
解决方案
(1)设置热点数据永不过期
从缓存层面来看,没有设置过期时间,所以不会出现热点 key 过期后产生的问题。
(2)加互斥锁
分布式锁:使用分布式锁,保证对于每个key同时只有一个线程去查询后端服务,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验很大。
缓存雪崩
概念
缓存雪崩,在某一个时间段,缓存集中失效过期,Redis 宕机。
产生雪崩的原因之一,比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。
其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或断网。因为自然形成的缓存雪崩,一定是在某个时间段集中创建缓存,这个时候,数据库也是可以顶住压力的。无非就是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。
解决方案
(1)redis高可用
这个思想的含义是,既然redis有可能挂掉,那我多增设几台redis,这样一台挂掉之后其他的还可以继续工作,其实就是搭建的集群。(异地多活!)
(2)限流降级
这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
(3)数据预热
数据加热的含义就是在正式部署之前,我先把可能的数据先预先访问一遍,这样部分可能大量访问的数据就会加载到缓存中。在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀
资料来源:根据视频学习整理:https://www.bilibili.com/video/BV1S54y1R7SB?p=36&spm_id_from=pageDriver
Redis数据有效性
Redis是作为缓存来使用,但是如何保证 MySQL 和 Redis 中的数据一致,缓存是否有效数据,是否会产生脏数据
缓存数据是有一个时效性,总会有一个时间差,在同时有请求读写的时候,出现数据不一致的问题,如何保证缓存与数据库的一致性,一般解决方案有以下几种
先删缓存,再更新数据库
容易产生脏数据
请求1刚删除缓存,还没更新呢,但是请求2,在删除缓存未更新的这个阶段,去拿到了旧数据,并且把缓存给更新了。这更新的缓存全是脏数据
先更新数据库,再更新缓存
请求1、2、3,请求1还未完成更新操作,但是请求2已经拿到旧数据了。但时间内,数据可能不一致
先更新缓存,再更新数据库
同步更新缓存
同步操作更新请求,查询请求拿到的就是最新的数据,不加入其它框架,就数据的一致性来说,这个算是最优的方案了,有个缺点就是可能会影响请求的响应时长
异步更新缓存
跟同步操作类似,只不过改成异步,面临的问题就是写入数据库时出现异常,发生回滚,或者宕机了,数据库的数据就没有更新成功,但是呢,缓存中又是更新后的数据。
加入消息队列
可以在进行Redis写操作时,先将操作写入消息队列中,然后在数据库中进行相应的操作。然后再执行查询操作,这样就可以通过消息队列来协调Redis和数据库的操作,保证数据的一致性。
淘汰策略
当Redis所使用的内存达到maxmemory限制时,它会根据设定的策略决定清理哪些数据以便为新数据腾出空间。
以下是一些常见的淘汰策略:
- noeviction:不会淘汰任何键,达到内存限制后返回错误
- allkeys-random:在所有键中,随机删除键
- volatile-random:在设置了过期时间的键中,随机删除键
- allkeys-lru:通过LRU算法淘汰最近最少使用的键,保留最近使用的键
- volatile-lru:从设置了过期时间的键中,通过LRU算法淘汰最近最少使用的键
- allkeys-lfu:从所有键中淘汰使用频率最少的键。从所有键中驱逐使用频率最少的键
- volatile-lfu:从设置了过期时间的键中,通过LFU算法淘汰使用频率最少的键
- volatile-ttl:从设置了过期时间的键中,淘汰马上就要过期的键
Redis 4.0 版本之后,新增了 LFU(Least Frequently Used)算法,即根据key的访问频率进行淘汰,较少访问的key将优先被淘汰。这个策略可以更精准地反映key的使用情况,但它需要更多的内存和计算资源。
如果希望尽可能地保留最近被访问的数据,则可以使用 LRU 策略;如果希望基于访问频率进行淘汰,则可以选择 LFU 策略。如果希望尽可能地保留最近被访问的数据,则可以使用 LRU 策略;如果希望基于访问频率进行淘汰,则可以选择 LFU 策略。
其它
远程连接数据库
redis-cli -h host -p port -a password
host:远程redis服务器host
port:远程redis服务端口
password:远程redis服务密码
查看redis内存占用
进入redis,使用命令:info memory
单位:字节
used_memory 由redis分配起分配的内存总量(包括redis进程开销和数据占用的内存)
used_memory_human 格式化显示使用内存量
used_memory_rss (rss是redis set size的缩写)该进程占物理内存的大小,是操作系统分配给redis实例的内存大小
used_memory_rss_human 格式化显示
used_memory_peak : redis的内存消耗峰值
used_memory_peak_human 格式化显示
used_memory_peak_perc 使用内存达到峰值内存的百分比(used_memory/used_memory_peak)*100%
used_memory_overhead :redis为了维护数据集的内部版机制所需的内存开销,包括所有客户段输出缓冲区/查询缓冲区,aop 重写缓冲区和主从复制的backlog
used_memory_startup redis服务起启动时消耗的内存
used_memory_dataset 数据占用的内存大小,即used_memory-userd_memory_overhead
used_memory_dataset_perc 数据占用内存大小的百分比 100%*(used_memory_dataset/used_memory-used_memory_startup)
total_system_memroy 整个系统内存
total_system_memory_human 格式化显示
used_memory_lua lua 脚本存储占用内存
used_memory_lua_human 格式化显示
maxmemory redis实例的最大内存配置
maxmemory_human 格式化显示
maxmemory_policy 当达到maxmemory时的淘汰策略
mem_fragmentation_ratio 内存的碎片率 ,used_memory_rss/used_memory --4.0版本之后可以使用memory purge手动回收内存
mem_allocator 内存分配器
active_defrag_running 表示没有活动的defrag任务正在运行 1.表示有活动的defrag任务正在运行(defrag 表示内存碎片整理)
lazyfree_pending_objects 表示redis执行lazy free操作 在等待被实际回收内容的键个数
内存占用来源:https://blog.csdn.net/weixin_39209728/article/details/127533944
分布式锁
先搞个分布式锁的工具类
/**
* Redis 分布式锁
*
**/
@Component
public class RedisLockUtils {
@Autowired
private RedisTemplate redisTemplate;
//分布式锁过期时间 s
private static final Long LOCK_REDIS_TIMEOUT = 10L;
//分布式锁休眠时间,用来失败以后再重试 ms
public static final Long LOCK_REDIS_WAIT = 500L;
/**
* 加锁,相当于setnx,不存在的话就创建,存在的话,不做操作,加上锁的过期时间,以防程序突然挂掉,锁一直存在,造成BUG
**/
public Boolean getLock(String key,String value){
Boolean lockStatus = this.redisTemplate.opsForValue().setIfAbsent(key,value, Duration.ofSeconds(LOCK_REDIS_TIMEOUT));
return lockStatus;
}
/**
* 释放锁,
* luaScript :Lua脚本,用Redis的get命令获取指定键的值,并与传入的value进行比较。如果相等,则使用del命令删除该键并返回1;否则返回0。
**/
public Long unLock(String key,String value){
String luaScript = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
RedisScript<Long> redisScript = new DefaultRedisScript<>(luaScript,Long.class);
Long releaseStatus = (Long)this.redisTemplate.execute(redisScript, Collections.singletonList(key),value);
return releaseStatus;
}
}
测试:
/**
* 在test4打个点卡住,然后运行test5,就能看到一直是锁被占用,等待中,然后等待时间结束又去重新获取锁,一直到test4放行以后,test5就获取到了锁,并且也正常释放
*/
@Autowired
private RedisLockUtils redisLockUtils;
@Test
void test4() throws InterruptedException {
Boolean stats = redisLockUtils.getLock("lock", "1");
if(stats){
System.out.println("获取锁");
redisLockUtils.unLock("lock", "1");
System.out.println("释放锁");
}else{
System.out.println("锁被占用,等待中");
Thread.sleep(RedisLockUtils.LOCK_REDIS_WAIT);
}
}
@Test
void test5() throws InterruptedException {
test6();
}
public void test6() throws InterruptedException {
Boolean stats = redisLockUtils.getLock("lock", "1");
if(stats){
System.out.println("获取锁");
redisLockUtils.unLock("lock", "1");
System.out.println("释放锁");
}else{
System.out.println("锁被占用,等待中");
Thread.sleep(RedisLockUtils.LOCK_REDIS_WAIT);
test6();
}
}
RDB无法持久化
RDB快照无法写入,
原因多种,
- 检查 Redis 的配置文件,确保 Redis 的 RDB 持久化功能已经启用。
- 检查 Redis 的磁盘空间是否足够。
- 检查 Redis 的磁盘是否正常。
- 检查 Redis 的服务器是否正常。
默认情况下, stop-writes-on-bgsave-error 配置为 yes ,即当 RDB 快照保存失败时停止写入操作。这是为了确保数据的一致性和完整性。如果你是自己用,希望即使在 RDB 快照保存失败时仍然允许写入操作,你可以将该配置设置为 no 。
变慢
确定是否真的变慢
在服务器直接执行命令,看看是不是真的变慢,如果不是,可能和网络还有后端的代码有关系
查看slowlog(慢日志)
查看 Redis 慢日志之前,需要设置慢日志的阈值。例如,设置慢日志的阈值为 5 毫秒,并且保留最近 500 条慢日志记录:
# 命令执行耗时超过 5 毫秒,记录慢日志
CONFIG SET slowlog-log-slower-than 5000
# 只保留最近 500 条慢日志
CONFIG SET slowlog-max-len 500
设置完成之后,所有执行的命令如果操作耗时超过了 5 毫秒,都会被 Redis 记录下来。
127.0.0.1:6379> SLOWLOG get 5
1) 1) (integer) 32693 # 慢日志ID
2) (integer) 1593763337 # 执行时间戳
3) (integer) 5299 # 执行耗时(微秒)
4) 1) "LRANGE" # 具体执行的命令和参数
2) "user_list:2000"
3) "0"
4) "-1"
2) 1) (integer) 32692
2) (integer) 1593763337
3) (integer) 5044
4) 1) "GET"
2) "user_info:1000"
...
原因
- 内存数据操作复杂度高:当Redis进行内存数据操作时,如果时间复杂度较高,会消耗更多的CPU资源,导致处理速度变慢。
- 数据传输阻塞:在Redis实例之间或内部,如客户端与服务器、主从节点、集群节点间的数据传输可能会发生阻塞,特别是在网络延迟较高或带宽受限的情况下更为明显。
- AOF和RDB配置不当:AOF持久化阻塞或RDB大内存页的配置使用不当也可能导致性能下降。例如,AOF的写回策略设置不当或在执行RDB备份时占用了大量资源。
- 过期key处理不佳:如果存在大量的过期key,而这些key的清理策略没有优化好,可能会导致Redis在处理这些key时出现性能瓶颈。
- 操作系统Swap操作:当系统内存不足时,操作系统可能会将部分数据从物理内存交换到磁盘上,这种Swap操作会严重影响Redis的性能。
Window安装redis
是个压缩包,直接解压缩运行
链接:https://pan.baidu.com/s/1thiL4z3cJLB9pdg2ezHP0g
提取码:ho5y
下载后解压缩,启动redis
window版redis修改端口未生效
修改 config\redis.windows.conf 文件,将redis.windows.conf文件直接拖到redis-server.exe上,redis就会按照配置文件启动,端口生效
window版redis设置密码
启动以后,先切换到redis目录,然后如下图
设置密码以后,做什么之前就得先验证密码,然后才能继续操作