费尔玛(Fermat)定理和欧拉(Euler)定理在公钥密码体制中起着重要作用。
1.费尔玛定理
定理4 -2(Fermat)若 p 是素数 ,a 是正整数且gcd (a,p) =1 , 则 a p -1 ≡1 mod p 。2.欧拉函数
设 n 是一正整数 , 小于 n 且与 n 互素的正整数的个数称为 n 的欧拉函数 , 记为φ (n) 定理4-3若n是两个素数p和q的乘积,则φ(n)=φ(p)×φ(q)=(p -1)×(q-1)。
3.欧拉定理
定理4 -4(Euler)若 a 和 n 互素 , 则 a φ (n) ≡1 mod n4.素性检验
素性检验是指对给定的数检验其是否为素数。对于大数的素性检验来说没有简单直接的方法