OJ百练1002 487-3279

<span style="font-family: Arial, Helvetica, sans-serif;">#include <iostream></span>
#include <string>
#include <vector>
#include <algorithm>
#include <map>
using namespace std;

bool judge(const char& ch)
{
    if(ch == '-')
        return true;
    else
        return false;
}

int main()
{
    int cnt;
    cin >> cnt;
    map<char, int> num;
    string temp;
    bool flag = true;
    map<string, int> vec;
    num['A'] = 2;
    num['B'] = 2;
    num['C'] = 2;
    num['D'] = 3;
    num['E'] = 3;
    num['F'] = 3;
    num['G'] = 4;
    num['H'] = 4;
    num['I'] = 4;
    num['J'] = 5;
    num['K'] = 5;
    num['L'] = 5;
    num['M'] = 6;
    num['N'] = 6;
    num['O'] = 6;
    num['P'] = 7;
    num['R'] = 7;
    num['S'] = 7;
    num['T'] = 8;
    num['U'] = 8;
    num['V'] = 8;
    num['W'] = 9;
    num['X'] = 9;
    num['Y'] = 9;
    while (cnt--)
    {
        cin >> temp;

        temp.erase(remove_if(temp.begin(), temp.end(), judge), temp.end());

       for (size_t i = 0; i < temp.size(); ++i)
            if (isalpha(temp[i]))
                temp[i] = '0' + num[temp[i]];
       vec[temp]++;
    }
   for (map<string, int>::const_iterator it = vec.begin(); it != vec.end(); ++it)
   {
       string str = it->first;
       str.insert(3, "-");
       if(it->second > 1)
       {
           flag = false;
           cout << str << " " << it->second << endl;
       }
   }
   if(flag)
     cout <<"No duplicates."<<endl;
    return 0;
}
比较水的一个题,无解的时候需要输出
No duplicates.
一开始没有注意 WA了一次
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这是一道经典的位运算题目,考察对二进制的理解和位运算的熟练程度。 题目描述: 给定一个长度为 $n$ 的数组 $a$,初始时每个数的值都为 $0$。现在有 $m$ 个操作,每个操作为一次询问或修改。 对于询问,给出两个整数 $l,r$,求 $a_l \oplus a_{l+1} \oplus \cdots \oplus a_r$ 的值。 对于修改,给出一个整数 $x$,表示将 $a_x$ 的值加 $1$。 输入格式: 第一行两个整数 $n,m$。 接下来 $m$ 行,每行描述一次操作,格式如下: 1 l r:表示询问区间 $[l,r]$ 的异或和。 2 x:表示将 $a_x$ 的值加 $1$。 输出格式: 对于每个询问操作,输出一个整数表示答案,每个答案占一行。 数据范围: $1 \leq n,m \leq 10^5$,$0 \leq a_i \leq 2^{30}$,$1 \leq l \leq r \leq n$,$1 \leq x \leq n$ 输入样例: 5 5 2 1 2 3 1 2 4 2 2 1 1 5 输出样例: 0 2 解题思路: 对于询问操作,可以利用异或的性质,即 $a \oplus b \oplus a = b$,将 $a_l \oplus a_{l+1} \oplus \cdots \oplus a_r$ 转化为 $(a_1 \oplus \cdots \oplus a_{l-1}) \oplus (a_1 \oplus \cdots \oplus a_r)$,因为两个前缀异或后的结果可以相互抵消,最后的结果即为 $a_1 \oplus \cdots \oplus a_{l-1} \oplus a_1 \oplus \cdots \oplus a_r = a_l \oplus \cdots \oplus a_r$。 对于修改操作,可以将 $a_x$ 对应的二进制数的每一位都分离出来,然后对应位置进行修改即可。由于只有加 $1$ 操作,所以只需将最后一位加 $1$ 即可,其余位不变。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值