CF判断正方形和矩形

//本题总结:判断特殊的的多边形的时候..要抓住很特别的特征..一定要能够确定是该多边形的条件.
//比如本题..出现了一个很特殊的直角梯形的情况..有了四个最小边相等..然后存在一个直角的情况..
//但是..开始写的时候的条件改成去判断全部形成的角是不是存在四个直角的话..就不会出现这样的情况了..
//有的时候..对角线会有比边小的情形出现..
#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct Node
{
    int x,y;
    Node(int x1,int y1):x(x1),y(y1){}
    Node(){};
};
int distan(Node a,Node b)
{
    return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
bool judge(Node a, Node b ,Node c)
{
    if( (a.x-b.x)*(c.x-b.x) == -(a.y-b.y)*(c.y-b.y))//判断以角abc是否是直角
        return 1;
    return 0;
}
bool judge1(Node a, Node b ,Node c,Node d)//判断是否是正方形.
{
    int dis[10];
    dis[1] = distan(a,b);
    dis[2] = distan(a,c);
    dis[3] = distan(a,d);
    dis[4] = distan(b,c);
    dis[5] = distan(b,d);
    dis[6] = distan(c,d);
    sort(dis+1,dis+7);
    if(dis[1] == dis[2] && dis[2] == dis[3] && dis[3] == dis[4])//寻找最小的四条边是否是相等.如果是正方形的话..
    {                                                                          //必然能够存在四条最小的边就是边长.
        int m = judge(a,b,c) + judge(a,b,d) + judge(c,b,d) + judge(b,a,c) + judge(b,a,d) + judge(c,a,d)+ judge(a,c,b)+ judge(d,c,b)+ judge(d,c,a) + judge(a,d,b)+judge(a,d,c)+judge(b,d,c);//再次判断是否存在四个直角
        if(m == 4)return 1;
    }
    else return 0;
}
bool judge2(Node a, Node b ,Node c,Node d)
{
    int dis[10];
    dis[1] = distan(a,b);
    dis[2] = distan(a,c);
    dis[3] = distan(a,d);
    dis[4] = distan(b,c);
    dis[5] = distan(b,d);
    dis[6] = distan(c,d);
    sort(dis+1,dis+7);
    if(dis[1] == dis[2] && dis[3] == dis[4])
    {
        int m = judge(a,b,c) + judge(a,b,d) + judge(c,b,d) + judge(b,a,c) + judge(b,a,d) + judge(c,a,d)+ judge(a,c,b)+ judge(d,c,b)+ judge(d,c,a) + judge(a,d,b)+judge(a,d,c)+judge(b,d,c);
        if( m == 4)
            return 1;
    }
    return 0;
}
int main()
{
    Node node[10];
    while(scanf("%d%d",&node[1].x,&node[1].y) != EOF)
    {
        for(int i = 2 ; i <= 8 ; i++)
        {
            scanf("%d%d",&node[i].x,&node[i].y);
        }
        bool vis[11];
        bool wori = 0;
        memset(vis,0,sizeof(vis));
        int ans[111];
        memset(ans,0,sizeof(ans));
        for(int i = 1 ; i <= 8 ; i++)
        {
            if(vis[i])continue;
            if(wori)break;
            for(int j = 1 ; j <= 8 ; j++)
            {
                if(j == i || vis[j])continue;
                if(wori)break;
                for(int k = 1 ; k <= 8 ; k++)
                {
                    if(k == i || k == j ||vis[k])continue;
                    if(wori)break;
                    for(int p = 1 ; p <= 8 ; p++)
                    {
                        if(p == i || p == j || p == k || vis[p])continue;
                        if(wori)break;
                        if(judge1(node[i],node[j],node[k],node[p]))
                        {
                            int t = 1;
                            for(int pp = 1 ; pp <= 8 ; pp++)
                            {
                                if(pp != i && pp != j && pp != k && pp != p)
                                {
                                    ans[t++] = pp;
                                    //printf("%d  \n",pp);
                                }
                            }
                            if(judge2(node[ans[1]],node[ans[2]],node[ans[3]],node[ans[4]]))
                            {
                                vis[i] = 1;
                                vis[j] = 1;
                                vis[k] = 1;
                                vis[p] = 1;
                                printf("YES\n");
                                printf("%d %d %d %d\n",i,j,k,p);
                                printf("%d %d %d %d\n",ans[1],ans[2],ans[3],ans[4]);
                                wori = 1;
                            }
                        }


                    }
                }
            }
        }
        if(!wori)printf("NO\n");
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值