左神基础班 - prim算法 生成 最小生成树

思想:先随便加入图中的某一个节点和其所连通的边,把节点放在一个哈希集合中,边放入以权重为大小比较对象的最小堆中。

然后每次都从最小堆中弹出一个边,我们考察这条边的所连接的to 节点 是否已经被访问过了,

1。如果已经访问过,这条边我们就不要了,因为要了的话 ,要么是该边又重新被考虑,要么该边的加入会导致环。   

2. 如果该节点没有被访问过,那说明这条边是没问题的,我们直接加入这条边进入解集,然后把To节点表示为已访问(放入哈希集合中),然后再把to节点所连通的所有边都放入最小堆中。

 

算法结束。


//primMST
unordered_set<Edge, EdgeHash, Equal_Edge> primMST(Graph graph){
	//装边的最小堆
	priority_queue<Edge,vector<Edge>,greater<Edge> > small_queue;
	//判断节点是否访问过了
	unordered_set<Node,NodeHash,Equal_Node> node_set;
	unordered_set<Edge,EdgeHash,Equal_Edge> result;
	//解决森林的 情况 ,否则只要内层的if就够了
	for(auto ite: graph.nodes){
		//对每一个节点,都问一下是否访问过了,如果没放过过,做以下操作
		if(node_set.find(*ite.second) == node_set.end()){
			//把该节点表示为访问过了,再把该节点所解锁的边都加入最小堆中
			node_set.insert(*ite.second);
			for(Edge* edge: ite.second->edges){
				small_queue.push(*edge);
			}
			//在当前这个图中,取找最小生成树
			while(small_queue.size() != 0){
				//从最小堆中拿出一个最小权重边,并取得这条边所对应的节点
				Edge help_edge = small_queue.top();
				small_queue.pop();
				Node edge_to = *(help_edge.to);
				//判断这个节点是否已经被访问过了,如果没有,则这条边就加入解集,并且我们 认可该点现在被访问了,把该点所有连接的边都加入最小堆
				if( node_set.find(edge_to) == node_set.end()){
					result.insert(help_edge);
					node_set.insert(edge_to);
					for(Edge *newEdge : edge_to.edges){
						small_queue.push(*newEdge);
					}
				}
			}
		}
	}
	return result;
}

 

 

全部代码:

#include<iostream>
#include<list>
#include<queue>
#include<stack>
#include<unordered_map>
#include<unordered_set>
using namespace std;
//解依赖
class Edge;
//并查集和 图公用一个Node
class Node{
public:
	int value;
	int in;
	int out;
	list<Node*> next;
	list<Edge*> edges;
	//Node 和 Edge 中都重新定义了 ==操作,是因为进入哈希表的,不仅要计算其哈希值,还要计算两节点是否相等
	//在并查集的 union_函数中用到了Node类型的比较操作,所以得自己重新定义
	bool operator == (const Node& n) const{
		return value == n.value;
	}
	//并查集中 father 要和 node节点比较 该node节点是否为代表节点
	bool operator != (const Node& n) const{
		return value != n.value;
	}
	Node(){}
	Node(int value){
		this->value = value;
		in = 0;
		out =0;
	}
};
class Edge{
public:
	int weight;
	int for_hash;
	Node* from;
	Node* to;

	Edge(int weight,Node* from, Node* to){
		this->weight = weight;
		this->from = from;
		this->to = to;
		this->for_hash = to->value;
	}
	// bool operator < (const Edge& edge) const{
	// 	return weight < edge.weight;
	// }
	bool operator > (const Edge& edge) const{
		return weight > edge.weight;
	}
	bool operator == (const Edge& e) const{
		return weight == e.weight;
	}
};
class Graph{
public:
	unordered_map<int, Node*> nodes;
	unordered_set<Edge*> edges;
};

class GraphGenerator{
public:
	Graph createGraph(int matrix[][3],int rows, int col){
		Graph graph;
		for(int i=0;i<rows;i++){
			int weight = matrix[i][0];
			int from = matrix[i][1];
			int to = matrix[i][2];
			if(graph.nodes.find(from) == graph.nodes.end()){
				graph.nodes[from] = new Node(from);
			}
			if(graph.nodes.find(to) == graph.nodes.end()){
				graph.nodes[to] = new Node(to);
			}
			//以上两个if操作后,必能找到 from 好人to节点
			Node* fromNode = graph.nodes.find(from)->second;
			Node* toNode = graph.nodes.find(to)->second;
			//为 graph 和 from所在的node 准备 一条边
			Edge* newEdge = new Edge(weight, fromNode, toNode);
			//对于新增的一条边, 被指向节点的入度+1
			toNode->in++;
			//对于新增的一条边, 指向节点的出度+1,所指向的节点确定,指向该节点的边确定
			fromNode->out++;
			fromNode->next.push_back(toNode);
			fromNode->edges.push_back(newEdge);
			//两个if会保证建立节点,这里保证 边的存在。
			graph.edges.insert(newEdge);

		}
		return graph;
	}
};
//由于使用了unoredred_map,以前我们使用基础的数据类型,系统能自己计算基础类型的hash值是什么,
//但现在我们要在哈希表中使用自定义的类型,所以得告诉哈希表该如何计算这一类型的哈希值
struct NodeHash{
	size_t operator () (const Node& n) const{
		return hash<int>()(n.value);
	}
};
struct EdgeHash{
	size_t operator () (const Edge& e) const{
		return ( hash<int>()(e.weight) <<1) ^ (hash<int>()(e.for_hash) << 1);
	}
};
//unordered_map/set是采用hash散列进行存储的,因此存储的对象必须提供两个方法,
//1,hash告知此容器如何生成hash的值,
//2,Equal_Edge 告知容器当出现hash冲突的时候,如何区分hash值相同的不同对象
struct Equal_Edge {
        bool operator()(const Edge& e1, const Edge& e2) const{
            return e1.weight == e2.weight && e1.for_hash == e2.for_hash;
        }
};
struct Equal_Node {
		bool operator()(const Node& n1, const Node& n2) const{
			return n1.value == n2.value;
		}
};

//primMST
unordered_set<Edge, EdgeHash, Equal_Edge> primMST(Graph graph){
	//装边的最小堆
	priority_queue<Edge,vector<Edge>,greater<Edge> > small_queue;
	//判断节点是否访问过了
	unordered_set<Node,NodeHash,Equal_Node> node_set;
	unordered_set<Edge,EdgeHash,Equal_Edge> result;
	//解决森林的 情况 ,否则只要内层的if就够了
	for(auto ite: graph.nodes){
		//对每一个节点,都问一下是否访问过了,如果没放过过,做以下操作
		if(node_set.find(*ite.second) == node_set.end()){
			//把该节点表示为访问过了,再把该节点所解锁的边都加入最小堆中
			node_set.insert(*ite.second);
			for(Edge* edge: ite.second->edges){
				small_queue.push(*edge);
			}
			//在当前这个图中,取找最小生成树
			while(small_queue.size() != 0){
				//从最小堆中拿出一个最小权重边,并取得这条边所对应的节点
				Edge help_edge = small_queue.top();
				small_queue.pop();
				Node edge_to = *(help_edge.to);
				//判断这个节点是否已经被访问过了,如果没有,则这条边就加入解集,并且我们 认可该点现在被访问了,把该点所有连接的边都加入最小堆
				if( node_set.find(edge_to) == node_set.end()){
					result.insert(help_edge);
					node_set.insert(edge_to);
					for(Edge *newEdge : edge_to.edges){
						small_queue.push(*newEdge);
					}
				}
			}
		}
	}
	return result;
}

int main(){
	GraphGenerator g;
	int matrix[][3]={{1,1,2},{1,1,3},{2,1,4},{2,2,3},{3,2,7},{4,7,3},
				{5,3,5},{6,4,6}};
	int length = sizeof(matrix)/sizeof(matrix[0]);
	Graph graph = g.createGraph(matrix, length,3);
	unordered_set<Edge,EdgeHash,Equal_Edge> edge_set = primMST(graph);
	unordered_set<Edge,EdgeHash,Equal_Edge>::iterator ite2  = edge_set.begin();
	while(ite2 != edge_set.end()){
		cout<< "from value: "<<(*ite2).from->value<<"  ";
		cout<< "to value: "<<(*ite2).to->value<<" ";
		cout << "weight : " << (*ite2).weight << endl;
		ite2++;
	}
	return 0;
}	

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值