Codeforces Round #118 (Div. 2) :C (矩阵快速幂)类似与斐波那契+矩阵乘法

参考地址:http://acshiryu.com/archives/1349

如图:

就是求第n个图形的上三角形的个数。

设f[n]为第n个图形的上三角的个数 g[n]为第n个图形的下三角的个数
则有:

f[n]=3*f[n-1]+g[n-1];
g[n]=3*g[n-1]+f[n-1];

可以用矩阵快速幂解决。

#include<iostream>
#include<cstdio>
#define Mod 1000000007
using namespace std;
struct Matrax {
    __int64 m[3][3];
};
Matrax per , A;
void Init() {
    A.m[0][0] = 3;per.m[0][0] = 1;
    A.m[0][1] = 1;per.m[0][1] = 0;
    A.m[1][0] = 1;per.m[1][0] = 0;
    A.m[1][1] = 3;per.m[1][1] = 1;    
}
Matrax multi(Matrax a , Matrax b) {
    int i , j , k;
    Matrax c;
    for(i = 0 ; i < 2 ; i ++) 
        for(j = 0 ; j < 2 ; j ++) {
            c.m[i][j] = 0;
            for(k = 0 ; k < 2; k ++) {
                c.m[i][j] += a.m[i][k]*b.m[k][j];
                c.m[i][j]%=Mod;    
            }    
        }
        return c;    
}
Matrax power(__int64 k) {
    Matrax p , ans;
    ans = per;
    p = A;    
    while(k) {
        if(k&1) {
            ans = multi(ans , p);    
        }    
        k/=2;
        p = multi(p , p);
    }
    return ans;
}
int main() {
    __int64 n;
    Init();
    while(scanf("%I64d",&n)!=EOF) {
        Matrax ans;
        ans = power(n);
        printf("%d\n",ans.m[0][0]);        
    }    
}


展开阅读全文

没有更多推荐了,返回首页