poj 2299 归并求逆序数

题意:给出一些数,然后求这串数字的逆序数,也就是从这个状态到升序状态的最小步数。

思路:归并排序,同时累加子问题的逆序数。

http://blog.csdn.net/morgan_xww/article/details/5742926

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int a[500010];
__int64 ans;
int Left[250005] , Right[250005]; 
void merge(int p , int q , int r) {
    int n1 , n2;
    n1 = q - p + 1;
    n2 = r - q;
    int i , j , k;
    for(i = 0 ; i < n1 ; i ++)
    Left[i] = a[p+i];
    Left[n1] = 0xfffffff;
    for(i = 0 ; i < n2 ; i ++)
    Right[i] = a[q+1+i];
    Right[n2] = 0xfffffff;
    i = j = 0;
    for(k = p ; k <= r ; k ++) {
        if(Left[i]<=Right[j]) {
            a[k] = Left[i];
            i++;
        } else {
            a[k] = Right[j];
            j++;
            ans += n1 - i;    //统计子问题的逆序数
        }
    }
}

void mergesort(int p , int r) {
    int q;
    if(p < r) {
        q = (p + r)/2;
        mergesort(p , q);
        mergesort(q+1 , r);
        merge(p , q , r);    
    }
}

int main() {
    int n , i;
    while(~scanf("%d",&n)) {
        if(n == 0) break;
        for(i = 0 ; i < n ; i ++)
        scanf("%d",&a[i]);
        ans = 0;
        mergesort(0 , n-1);
        printf("%I64d\n",ans);
    }   
    return 0; 
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值