NYOJ http://acm.nyist.net/JudgeOnline/problem.php?pid=16
题意:给出一系列的矩形长宽,求符合矩形嵌套的最多矩形。。
思路1:白书上说的DP。。。如果矩形A可以嵌套在矩形B中,那么map[A][B]有边,最后在这些矩形中找到从一个矩形出发的最长路。
#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
const int maxn = 1005;
struct Rec {
int x , y;
};
int n , Map[maxn][maxn] , dp[maxn];//dp 从该矩形出发的最长路
int solve(int i) {
int j;
int& ans = dp[i];
if(ans > 0) return ans;
ans = 1;
for(j = 0 ; j < n ; j ++) {
if(Map[i][j]) {
int tmp;
tmp = solve(j)+1;
if(tmp > ans)
ans = tmp;
}
}
return ans;
}
int main() {
Rec R[maxn];
int i , j , N;
scanf("%d",&N);
while(N--) {
scanf("%d",&n);
for(i = 0 ; i < n ; i ++)
scanf("%d%d",&R[i].x,&R[i].y);
memset(Map , 0 , sizeof(Map));
for(i = 0 ; i < n ; i ++)
for(j = 0 ; j < n ; j ++)
if((R[i].x < R[j].x && R[i].y < R[j].y)||(R[i].x < R[j].y && R[i].y < R[j].x))
Map[i][j] = 1;
memset(dp , 0 , sizeof(dp));
int cnt = 0;
for(i = 0 ; i < n ; i ++)
if(solve(i)>cnt)
cnt = solve(i);
printf("%d\n",cnt);
}
}
思路2:贪心,先把这些矩形进行排序,大边作为长,小边作为宽,然后按照先长后宽进行二级降序排序,最后找的时候枚举每一个矩形,找到以这个矩形出发的最长子序列并保存个数到数组中,最后找出数组中的最大值即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 1005;
struct Rec {
int x , y;
//int id;
};
int cmp(Rec a , Rec b) {
if(a.x > b.x) return 1;
else if(a.x == b.x) {
return a.y > b.y;
}
return 0;
}
int main() {
Rec R[maxn];
int i , j , N , n , f[maxn];
int aa , bb;
scanf("%d",&N);
while(N--) {
scanf("%d",&n);
for(i = 0 ; i < n ; i ++) {
scanf("%d%d",&aa,&bb);
if(aa > bb) {
R[i].x = aa , R[i].y = bb;
} else {
R[i].x = bb , R[i].y = aa;
}
}
sort(R , R+n , cmp);
memset(f , 0 , sizeof(f));
int t_x , t_y;
for(i = 0 ; i < n ; i ++) {
f[i] = 1;
for(j = i - 1 ; j >= 0 ; j --) { //往后找 最长子序列、、 这样可以用到已经找到的结果
if(f[j]+1 > f[i] && R[i].x < R[j].x && R[i].y < R[j].y)
f[i] = f[j] + 1;
}
}
int maxx = 1;
for(i = 0 ; i < n ; i ++)
if(f[i] > maxx) maxx = f[i];
printf("%d\n",maxx);
}
}