矩形覆盖

NYOJ http://acm.nyist.net/JudgeOnline/problem.php?pid=16

题意:给出一系列的矩形长宽,求符合矩形嵌套的最多矩形。。

思路1:白书上说的DP。。。如果矩形A可以嵌套在矩形B中,那么map[A][B]有边,最后在这些矩形中找到从一个矩形出发的最长路。

#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
const int maxn = 1005;
struct Rec {
    int x , y;    
};

int n , Map[maxn][maxn] , dp[maxn];//dp 从该矩形出发的最长路 

int solve(int i) {
    int j;
    int& ans = dp[i];
    if(ans > 0) return ans;  
    ans = 1;
    for(j = 0 ; j < n ; j ++) {
        if(Map[i][j]) {
            int tmp;
            tmp = solve(j)+1;
            if(tmp > ans)
            ans = tmp;
        }
    }
    return ans;
}

int main() {
    Rec R[maxn];
    int i , j , N;
    scanf("%d",&N);
    while(N--) {
        scanf("%d",&n);
        for(i = 0 ; i < n ; i ++)
        scanf("%d%d",&R[i].x,&R[i].y);
        memset(Map , 0 , sizeof(Map));
        for(i = 0 ; i < n ; i ++)
            for(j = 0 ; j < n ; j ++) 
                if((R[i].x < R[j].x && R[i].y < R[j].y)||(R[i].x < R[j].y && R[i].y < R[j].x))
                Map[i][j] = 1;
                memset(dp , 0 , sizeof(dp));
                int cnt = 0;
                for(i = 0 ; i < n ; i ++)
                    if(solve(i)>cnt) 
                    cnt = solve(i);
                    printf("%d\n",cnt);
    }   
}

思路2:贪心,先把这些矩形进行排序,大边作为长,小边作为宽,然后按照先长后宽进行二级降序排序,最后找的时候枚举每一个矩形,找到以这个矩形出发的最长子序列并保存个数到数组中,最后找出数组中的最大值即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 1005;
struct Rec {
    int x , y;
    //int id;    
};
int cmp(Rec a , Rec b) {
    if(a.x > b.x) return 1;
    else if(a.x == b.x) {
        return a.y > b.y;    
    }  
    return 0;
}
int main() {
    Rec R[maxn];
    int i , j , N , n , f[maxn];
    int aa , bb;
    scanf("%d",&N);
    while(N--) {
        scanf("%d",&n);
        for(i = 0 ; i < n ; i ++) {
            scanf("%d%d",&aa,&bb);
            if(aa > bb) {
                R[i].x = aa , R[i].y = bb;
            } else {
                R[i].x = bb , R[i].y = aa;    
            }
        }
        sort(R , R+n , cmp);
        memset(f , 0 , sizeof(f));
        int t_x , t_y;
        for(i = 0 ; i < n ; i ++) {
            f[i] = 1;
            for(j = i - 1 ; j >= 0 ; j --) {  //往后找 最长子序列、、 这样可以用到已经找到的结果 
                if(f[j]+1 > f[i] && R[i].x < R[j].x && R[i].y < R[j].y)
                f[i] = f[j] + 1;
            }   
        }
        int maxx = 1;
        for(i = 0 ; i < n ; i ++) 
            if(f[i] > maxx) maxx = f[i];
            printf("%d\n",maxx);
     }   
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值