Deformable Convolutional Networks

 创新点:提出了两个新的模块 deformable convolution 和 deformable RoI  pooling,通过学习的方式学习 offset 从而更高效地提取特征点用于卷积操作。

Deformable Convolution

 如上图所示,整个流程

  1. 通过一个 conv 层得到一个与原始 feature map 同等大小的 offset field
  2. offset field 的 channel num 为卷积核数量的两倍,分别对应一个卷积核的 x 和 y 的偏移
  3. 由于 xy offset 通常为分数,在具体卷积时使用双线性插值来得到具体 offset 位置上的特征。并由于基于双线性插值,实现对 offset 的梯度反传,对 offset 进行学习。

Deformable RoI Pooling

RoI Pooling

 如上图所示,整个流程

  1. 通过传统方式得到 pooled feature maps 
  2. 之后经过一层 fc 得到归一化的 offset
  3. 基于检测框的宽和高,并乘以一个缩放系数 gamma,得到最终的 offset
  4. 基于得到的 offset 使用相同的双线性插值,然后基于新的特征重新得到 pooled feature maps

Position-Sensitive (PS) RoI Pooling

 

  1.  原始流程(下分支):通过一个全卷积层,得到同尺度的 k*k*(C+1) 的 score maps,k 是 RoI bin 的数目,C 是检测目标的类别
  2. 上分支:对于每个类别,每个 RoI,得到对应 xy 的归一化 offset
  3. 同样乘上 RoI 的长宽和参数,得到最终的 offset

其他相似的工作

  1. Spatial Transform Networks (STN):M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks. In NIPS, 2015.
  2. Active Convolution:Y. Jeon and J. Kim. Active convolution: Learning the shape of convolution for image classification. In CVPR, 2017.
  3. Effective Receptive Field:W. Luo, Y. Li, R. Urtasun, and R. Zemel. Understanding the effective receptive field in deep convolutional neural networks. arXiv preprint arXiv:1701.04128, 2017.
  4. Atrous convolution:M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian. A real-time algorithm for signal analysis with the help of the wavelet transform. Wavelets: Time-Frequency Methods and Phase Space, page 289297, 1989.
  5. Deformable Part Models (DPM):P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010
  6. DeepID-Net:W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang, Z. Wang, C.-C. Loy, and X. Tang. Deepid-net: Deformable deep convolutional neural networks for object detection. In CVPR, 2015
  7. Spatial manipulation in RoI pooling:S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
  8. Transformation invariant features and their learning
  9. Dynamic Filter:B. D. Brabandere, X. Jia, T. Tuytelaars, and L. V. Gool. Dynamic filter networks. In NIPS, 2016.
  10. Combination of low level filters:J. J. Koenderink and A. J. van Doom. Representation of lo-
    cal geometry in the visual system. Biological Cybernetics, 55(6):367–375, Mar. 1987.

Deformable Convolution/RoI Pooling Backpropagation

 Deformable Convolution

 

 Deformable RoI Pooling

### 回答1: 可变形卷积网络(Deformable Convolutional Networks, DCN)是一种卷积神经网络,其允许卷积核的形状在运行时发生变化。这使得网络能够适应不同形状的目标,并在识别对象时获得更高的精度。DCN通过在普通卷积层上加入一个可变形控制层来实现可变形卷积。 ### 回答2: 可变形卷积网络(Deformable Convolutional Networks,DCN)是一种基于卷积神经网络(CNN)的改进技术。它是由微软亚洲研究院提出的一种新型的卷积实现。相比于传统的卷积操作,可变形卷积更加适合于图像中存在的错位、形变等问题。 可变形卷积网络使用了可变形卷积操作代替了普通的卷积操作。其主要思想是在空间结构中引入可变形卷积核,并利用其根据突出区域自适应进行偏移,从而获得更准确的分割结果。具体来说,可变形卷积使用了两个并行的转换网络,它们的输出结果被用来控制卷积核的偏移。一个转换网络用于生成偏移量,而另一个用于生成系数。 对于一个输入图像的像素点而言,传统的卷积操作使用的卷积核是在固定位置上的局部像素数据去学习特征的权重。而可变形卷积则引入了可变形卷积核,并增加了一个偏移量的学习过程。即可变形卷积核首先会根据突出区域自适应调整,形成具有方向性和形变性质的卷积核,再用这个卷积核去识别图像的特征。 总之,相比较于使用固定的卷积核来进行卷积操作,可变形卷积网络可以更加准确地提取图像的特征,消除像素错位的问题,并获得更加可靠和精准的预测结果。近年来,可变形卷积网络已经被广泛应用到目标检测、语义分割等领域,取得了不俗的成效。 ### 回答3: Deformable Convolutional Networks(可变形卷积网络)是一种基于卷积神经网络(CNN)的创新结构,能够自适应感受野来适应不同尺度的特征提取。传统CNN的卷积核是固定的,无法区分不同位置像素的重要性,而DCN则引入了可变形卷积来实现自适应调整卷积核,从而获得更好的特征提取能力。 DCN最大的特点就是在卷积操作中引入了可变形卷积,即使卷积核不断变形,也能够对图像中不同成分进行区分。具体来说,可变形卷积将每个卷积核拆分成两部分,一部分是原始卷积核,一部分则是从特征图中自适应生成的偏移量。通过调整偏移量,可变形卷积核能够自适应调整,以适应不同的图像区域,从而提高了准确率。 相对于传统CNN,DCN在许多领域都有了极大的优势。比如在目标检测中,DCN能够对于不同尺度的物体进行更好的特征提取,因此在各种目标检测任务中都取得了很不错的成果。在语义分割领域,DCN能够真正意义上地较好地适应于不规则的语义区域,能够更加准确地分割出更加复杂的物体。 总之,Deformable Convolutional Network 是一种创新结构,能够通过引入可变形卷积来提高图像特征提取的准确性,并在目标检测和分类、语义分割等领域中取得了良好的表现。未来,这种创新性结构还会不断地被应用于更加丰富多彩的图像识别场景中,带来更加优秀的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值