决策树
1、基本概念
信息熵
信息增益
逻辑回归
1. 逻辑回归通常处理什么类型的问题
提示:根据课程的案例梳理
2. 描述Sigmoid激活函数的特点和作用
3. 假设函数是如何根据PR、ER的值判断是否患病
结合乳腺癌诊断数据案例说明
4. 解释样本数据分类为0/1时,误差函数值的实际含义
样本y为1,对应的误差函数
对数函数
线性回归
0. 假设函数
1. 解释误差函数中每个参数的意义
2. 梯度的概念
3. 步长的理解
步长又称学习率,它的实际意义是什么
步长过大、步长过小的影响
4. 梯度下降算法
请解释梯度下降算法的实现过程
计算公式:
每个参数的计算形式:
实现公式:
附件材料
分类和回归
分类和回归的本质是一样的,都是对输入做出预测,其区别在于输出的类型。
分类问题:分类问题的输出是离散型变量(如: +1、-1),是一种定性输出。(预测明天天气是阴、晴还是雨)
回归问题:回归问题的输出是连续型变量,是一种定量输出。(预测明天的温度是多少度)。
梯度下降示意图