机器学习预习问题集锦

决策树

1、基本概念

信息熵

信息增益

 

逻辑回归

1. 逻辑回归通常处理什么类型的问题

提示:根据课程的案例梳理

2. 描述Sigmoid激活函数的特点和作用

3. 假设函数是如何根据PR、ER的值判断是否患病

结合乳腺癌诊断数据案例说明

4. 解释样本数据分类为0/1时,误差函数值的实际含义

样本y为1,对应的误差函数

对数函数

 

线性回归

0. 假设函数

    

1. 解释误差函数中每个参数的意义

    

2. 梯度的概念

    备注:机器学习之梯度与梯度下降法

              导数、偏导数、方向导数、梯度

3. 步长的理解

    步长又称学习率,它的实际意义是什么

    步长过大、步长过小的影响

4. 梯度下降算法

    请解释梯度下降算法的实现过程

 

      计算公式: \Theta_j = \Theta_j - \alpha $\nabla$J(\Theta )

    每个参数的计算形式:

    实现公式:

 

附件材料

分类和回归

分类和回归的本质是一样的,都是对输入做出预测,其区别在于输出的类型。

分类问题:分类问题的输出是离散型变量(如: +1、-1),是一种定性输出。(预测明天天气是阴、晴还是雨) 
回归问题:回归问题的输出是连续型变量,是一种定量输出。(预测明天的温度是多少度)。

梯度下降示意图

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值