目录
机器学习中,在求解损失函数的最小值时,需要用到求导数的各种技巧。
1.导数
- 导数的几何意义:导数又叫微分,是图像的斜率。

- 多元函数的偏导数

- 偏导数的几何意义

2.梯度
- 梯度的定义
来自百度:(梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方
本文介绍了机器学习中常用的梯度和梯度下降法。梯度是函数增长最快的方向,梯度下降法通过寻找梯度的反方向以最小化损失函数,类似于在山中找寻下山最快路径的过程。学习率(步长)α在算法中至关重要,控制着每次迭代的步幅,避免错过最小值点或过快导致震荡。梯度下降法可能会遇到参数调整缓慢和收敛于局部极小值的问题。
目录
机器学习中,在求解损失函数的最小值时,需要用到求导数的各种技巧。



来自百度:(梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方
1078