机器学习之梯度与梯度下降法

本文介绍了机器学习中常用的梯度和梯度下降法。梯度是函数增长最快的方向,梯度下降法通过寻找梯度的反方向以最小化损失函数,类似于在山中找寻下山最快路径的过程。学习率(步长)α在算法中至关重要,控制着每次迭代的步幅,避免错过最小值点或过快导致震荡。梯度下降法可能会遇到参数调整缓慢和收敛于局部极小值的问题。
摘要由CSDN通过智能技术生成

目录

1.导数

2.梯度

3.梯度下降法

4.梯度下降存在的问题


机器学习中,在求解损失函数的最小值时,需要用到求导数的各种技巧。

1.导数

  • 导数的几何意义:导数又叫微分,是图像的斜率。

  • 多元函数的偏导数

  • 偏导数的几何意义

2.梯度

  • 梯度的定义

来自百度:(梯度的本意是一个向量(矢量),

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

且行且安~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值