[HDU 2191] 多重背包问题学习笔记

Description:

急!灾区的食物依然短缺!
为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元,而市场有m种大米,每种大米都是袋装产品,其价格不等,并且只能整袋购买。
请问:你用有限的资金最多能采购多少公斤粮食呢?

后记:
人生是一个充满了变数的生命过程,天灾、人祸、病痛是我们生命历程中不可预知的威胁。
月有阴晴圆缺,人有旦夕祸福,未来对于我们而言是一个未知数。那么,我们要做的就应该是珍惜现在,感恩生活——
感谢父母,他们给予我们生命,抚养我们成人;
感谢老师,他们授给我们知识,教我们做人
感谢朋友,他们让我们感受到世界的温暖;
感谢对手,他们令我们不断进取、努力。
同样,我们也要感谢痛苦与艰辛带给我们的财富~

 

Input

输入数据首先包含一个正整数C,表示有C组测试用例,每组测试用例的第一行是两个整数n和m(1<=n<=100, 1<=m<=100),分别表示经费的金额和大米的种类,然后是m行数据,每行包含3个数p,h和c(1<=p<=20,1<=h<=200,1<=c<=20),分别表示每袋的价格、每袋的重量以及对应种类大米的袋数。

Output

对于每组测试数据,请输出能够购买大米的最多重量,你可以假设经费买不光所有的大米,并且经费你可以不用完。每个实例的输出占一行。

Sample Input

1
8 2
2 100 4
4 100 2

Sample Output

400

 

 

这是一个典型的多重背包问题,这种问题和0-1背包问题的区别在于,0-1背包问题中的物品每样只能取一次,多重背包问题中的物品每样最多可以取n[i]次(而完全背包问题里的物品每样可以取无穷多次)

一个较为直接的方法是把n[i]件物品拆开来当作0-1背包问题来解决,但是这样做的效率比较一般

一个更好的方法是利用二进制计数的思想,即把n[i]个物品分好组,每组看作是一个整体物品,则每组的cost和weight分别为

a*c[i]和a*w[i],  a=2^0,2^1,2^2,...,2^(k-1), V-(2^k-1)

#include<bits/stdc++.h>
using namespace std;
int W,n;
int w[2005],v[2005];
int dp[20005];
int main()
{
    #ifdef LOCAL_PC
    freopen("E:/1.txt","r",stdin);
    #endif
    int T;
    scanf("%d",&T);
    while(T--)
    {
        memset(dp,0,sizeof(dp));
        scanf("%d%d",&W,&n);
        int cnt=0;
        int a,b,c;
        for(int i=0;i<n;i++)
        {
            scanf("%d%d%d",&a,&b,&c); //w,a;v,b
            int j=1;
            for(;j*2-1<=c;j=j*2)
            {
                w[cnt]=j*a;
                v[cnt]=j*b;
                cnt++;
            }
            if(j-1<c)
            {
                w[cnt]=(c-j+1)*a;
                v[cnt]=(c-j+1)*b;
                cnt++;
            }

        }
        for(int i=0;i<cnt;i++)
            for(int j=W;j>=w[i];j--)
                dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
        printf("%d\n",dp[W]);
    }
    return 0;
}

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页