[HDU 1114] Piggy-Bank [完全背包问题学习笔记]

Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams.

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.

 

 

这是一道完全背包问题。完全背包问题的描述如下:

有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

 

可以看出,完全背包问题和0-1背包问题的区别就在于完全背包问题里面的每一种物品可以取多次,而0-1背包问题里的每一种物品只能取一次

 

设dp[i][j]表示对于一个容量为j的背包,放入了i种物品后价值的最大值,则有:

dp[i][j]=max( dp[i-1][j] , dp[i][ j-c[i] ] + w[i] ) (j>=c[i])

其中 dp[i-1][j] 对应的是本次决策不放入第i种物品,而dp[i][ j-c[i] ]+w[i]对应着本次决策放入第i种物品。 dp[i][ j-c[i] ] 意味着之前的决策可能已经放入过第i种物品,即允许重复使用某一种物品。(在0-1背包问题里,放入第i种物品要改成 dp[i-1][ j-c[i] ],因为不允许重复放入某一样物品)

 

优化空间后,可以得到

for(int i=1;i<=N;++i)
  for(int j=c[i]; j<=V ;++j)
    dp[j]=max( dp[j] , dp[ j-c[i] ]+w[i] );

和0-1背包问题不同,此处j采用的是正序遍历(0-1背包问题中采用的是逆序遍历)。导致该区别的原因就是可重复使用某样物品表示为dp[i][j-c[i]],而不允许重复使用某样物品表示为dp[i-1][j-c[i]]

 

应该注意的是,本题求的是最小价值,所以max要改成min,同时初始化的时候dp[0]=0,dp[i]=INF(i>0),表示必须装满

完整代码如下:

#include <bits/stdc++.h>
using namespace std;
const int maxn=507;
const int INF=1e9+7;
const int INF2=1e6*5+7;
int c[maxn],w[maxn];
int dp[int(1e4+7)];
int main()
{
    ios::sync_with_stdio(false);
    #ifdef LOCAL_PC
	freopen("E:/1.txt", "r", stdin);
    #endif // LOCAL_PC
    int T;
    cin >> T;
    while(T--)
    {
        int E,F,V;
        cin >> E >> F;
        V=F-E;
        int N;
        cin >> N;
        for(int i=1;i<=N;++i)
        {
            cin >> w[i] >> c[i];
        }

        for(int i=0;i<=V;++i) dp[i]=INF;
        dp[0]=0;

        for(int i=1;i<=N;++i)
        {
            for(int j=c[i]; j<=V ;++j)
                dp[j]=min(dp[j],dp[j-c[i]]+w[i]);
        }

        if(dp[V]>INF2)
            cout <<"This is impossible."<<endl;
        else
            cout << "The minimum amount of money in the piggy-bank is "<<dp[V]<<"." <<endl;
    }



	return 0;
}

 

==========================================================================================

下面收录另外两种效率相对较低的写法

(1) dp[i][j]=opt( dp[i-1][j-k*c[i]] + k*w[i]  )  opt=max or min, j>=k*c[i]


        for(int i=0;i<=V;++i) dp[i]=INF;
        dp[0]=0;

        for(int i=1;i<=N;++i)
        {
            for(int j=V; j>=0 ;--j)
            {
                for(int k=0;k<=j/c[i];++k)
                    dp[j]=min(dp[j],dp[j-k*c[i]]+k*w[i]);
            }
        }

        if(dp[V]>INF2)
            cout <<"This is impossible."<<endl;
        else
            cout << "The minimum amount of money in the piggy-bank is "<<dp[V]<<"." <<endl;

 

(2)



        int x=N+1;
        for(int i=1;i<=N;++i)
        {
            cin >> w[i] >> c[i];
            for(int k=2;k*c[i]<=V;k=k*2)
            {
                c[x]=k*c[i];
                w[x]=k*w[i];
                ++x;
            }
        }


        for(int i=0;i<=V;++i) dp[i]=INF;
        dp[0]=0;

        for(int i=1;i<=x-1;++i)
        {
            for(int j=V;j>=c[i];--j)
                dp[j]=min(dp[j], dp[j-c[i]]+w[i]);
        }

        if(dp[V]>INF2)
            cout <<"This is impossible."<<endl;
        else
            cout << "The minimum amount of money in the piggy-bank is "<<dp[V]<<"." <<endl;

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页