Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
题目解析:判断是否是平衡二叉树,也是利用递归的方法,当左右子树都是平衡二叉树,且左右子树高度差小于2的时候,为true,其他都为false。
class Solution {
public:
bool isBalanced(TreeNode *root) {
int height;
return JudgeBalance(root,height);
}
bool JudgeBalance(TreeNode *root,int &height){
if(root == NULL){
height = 0;
return true;
}
int lheight,rheight;
bool Judge = JudgeBalance(root->left,lheight) && JudgeBalance(root->right,rheight);
if(Judge == true){ //写if语句要写全,else也要带上,不然产生不易发现的错误
height = lheight>rheight ? (lheight+1) : (rheight+1);
if(lheight-rheight >= 2 || rheight-lheight>=2)
return false;
}else
return false;
return true;
}
};
另外的解法:
将bool变量设成私有变量,然后再函数的入口判断,如果为false直接退出,就不递归了。代码很简洁,应学习:
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
private:
bool balanced = true;
int height(TreeNode *root) {
if (!balanced) {
return -1;
}
if (root == NULL) {
return 0;
}
int lH = height(root->left) + 1;
int lL = height(root->right) + 1;
if (abs(lH - lL) > 1) {
balanced = false;
}
return lH > lL ? lH : lL;
}
public:
bool isBalanced(TreeNode *root) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
balanced = true;
height(root);
return balanced;
}
};