首先明确行列式的定义
行列式是一个数,是对方阵的一种映射,矩阵A的行列式记为|A|。
逆序数法的行列式计算公式为
公式理解
n是方阵的阶数,也就是几行几列
𝑆𝑛 是1到n的排列组合集合,称为全体置换,比如1到2,𝑆𝑛={1,2},{2,1}
σ是𝑆𝑛 中的一个置换,比如{1,2}
σ(i)为σ中的第i个元素
置换的逆序数,i<j但σ(i)>σ(j),比如置换{1,2}的逆序数为0,{2,1}的逆序数为1
sgn(σ)是置换的逆序数的符号值,逆序数为偶数时sgn(σ)=1,否则sgn(σ)=-1
实例讲解
我们看一个具体的例子,假设求2阶矩阵的行列式:
①首先找到全体置换𝑆𝑛={1,2},{2,1}
②计算每一个置换的逆序数,置换{1,2}的逆序数为0(偶数),{2,1}的逆序数为1
③求得置换的逆序数的符号值,sgn({1,2})=1,sgn({2,1})=-1
④带入公式得
⑤将σ(i)带入,计算结果为𝑎11𝑎22−𝑎12𝑎21