逆序数法求解矩阵的行列式

首先明确行列式的定义

行列式是一个数,是对方阵的一种映射,矩阵A的行列式记为|A|

逆序数法的行列式计算公式为

公式理解

n是方阵的阶数,也就是几行几列

𝑆𝑛  是1到n的排列组合集合,称为全体置换,比如1到2,𝑆𝑛={1,2},{2,1}

σ是𝑆𝑛 中的一个置换,比如{1,2}

σ(i)为σ中的第i个元素

置换的逆序数,i<j但σ(i)>σ(j),比如置换{1,2}的逆序数为0,{2,1}的逆序数为1

sgn(σ)是置换的逆序数的符号值,逆序数为偶数时sgn(σ)=1,否则sgn(σ)=-1

实例讲解

我们看一个具体的例子,假设求2阶矩阵的行列式:

①首先找到全体置换𝑆𝑛={1,2},{2,1}

②计算每一个置换的逆序数,置换{1,2}的逆序数为0(偶数),{2,1}的逆序数为1

③求得置换的逆序数的符号值,sgn({1,2})=1,sgn({2,1})=-1

④带入公式得

⑤将σ(i)带入,计算结果为𝑎11𝑎22−𝑎12𝑎21

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值