【线性代数】第1章:行列式(大学期末考试必看)

目录

一、基本概念

二、行列式性质

三、行列式计算

四、克莱姆法则

五、范德蒙行列式


(原创文章,转载请注明出处)

一、基本概念

1. 逆序、逆序数

排在左边的数大于右边的数,称为一个逆序,一个排列逆序的总数称为逆序数

2. 对角线法则

主对角线元素乘积之和减去副对角线元素乘积之和

3. 排列
逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列、

4. 余子式

行列式去掉ij列剩下元素构成的行列式,称为a_{ij}的余子式,记作:M_{ij}

5. 代数余子式

在余子式的基础上:A_{ij}= \left ( -1 \right )^{i+j}M_{ij} ,称为元素a_{ij}的代数余子式

二、行列式性质

性质一:行列式与其转置行列式的值相等(即:D^T=D

性质二:互换行列式的两行(列),行列式的值仅改变符号

推论:若行列式中有两行(或两列)对应元素相同, 则行列式等于零

性质三:行列式的某一行(或列)有公因子k, 则公因子k可以提到行列式外面

推论:行列式的某一行(或列)所有元素的公因子可以提到行列式的前面

推论:如果行列式中有两行(列)对应元素成比例, 则此行列式的值为零

推论:若行列式中某一行(列)元素全为零, 则行列式的值为零

性质四:若行列式的某一行(列)的元素都是两数之和,则可按此行(列)将行列式拆成两个行列式的和

性质五:把行列式的某一行(列)的每个元素都乘以数k, 加到另一行(列)中对应元素上, 行列式的值不变

性质六:行列式可以按任意行(列)展开, 值不变(行列式展开定理)

例如:按第i行展开,即:

D=a_{i1}A_{i1}+a_{i2}A_{i2}+\ldots+a_{in}A_{in}=\sum_{j=1}^{n}{a_{ij}A_{ij}}(按列展开同理)

推论:行列式中某一行(列)的元素与另一行(列)的元素对应的代数余子式的乘积之和等于零

三、行列式计算

1. 对角线法则:主对角线元素乘积之和减去副对角线元素乘积之和

2. 上(下)三角法:上三角或下三角元素全部划为0,其值为主对角线元素之积

3. 降阶法:利用行列式性质是行列式中出现较多的0,然后利用代数余子式展开

4. 其他方法:升阶法、拆分法、递推法(用得较少,不做要求)

四、克莱姆法则

1. 定义

对于线性方程组(方程个数 = 未知数个数):

\begin{cases} a_{11}x_1+a_{12}x_1+\cdots\ a_{1n}x_n=b_1 \\ a_{21}x_1+a_{22}x_2+\cdots\ a_{2n}x_n=b_2 \\ \cdots\cdots \\ a_{n1}x_1+a_{n2}x_2+\cdots\ a_{nn}x_n=b_n \end{cases}
线性方程组的系数行列式:

D=\left|\begin{matrix}a_{11}&a_{12}&\begin{matrix}\cdots&a_{1n}\\\end{matrix}\\a_{21}&a_{22}&\begin{matrix}\cdots&a_{2n}\\\end{matrix}\\\begin{matrix}\vdots\\a_{n1}\\\end{matrix}&\begin{matrix}\vdots\\a_{n2}\\\end{matrix}&\begin{matrix}\begin{matrix}\ddots\\\cdots\\\end{matrix}&\begin{matrix}\vdots\\a_{nn}\\\end{matrix}\\\end{matrix}\\\end{matrix}\right|\neq0

则方程组有唯一解:x_1=\frac{D_1}{D}x_2=\frac{D_2}{D},…,x_n=\frac{D_n}{D}

其中:D_j是系数行列式D的j列替换为常数项所得:

D_j=\left|\begin{matrix}\begin{matrix}a_{11}\\a_{21}\\\end{matrix}&\begin{matrix}\cdots\\\cdots\\\end{matrix}&\begin{matrix}a_{1,j-1}\\a_{2,j-1}\\\end{matrix}\\\begin{matrix}\vdots\\a_{n1}\\\end{matrix}&\begin{matrix}\ddots\\\cdots\\\end{matrix}&\begin{matrix}\vdots\\a_{n,j-1}\\\end{matrix}\\\end{matrix}\ \ \ \begin{matrix}\begin{matrix}b_1\\b_2\\\end{matrix}&\begin{matrix}a_{1,j+1}\\a_{2,j+1}\\\end{matrix}\\\begin{matrix}\vdots\\b_n\\\end{matrix}&\begin{matrix}\vdots\\a_{n,j+1}\\\end{matrix}\\\end{matrix}\ \ \ \begin{matrix}\begin{matrix}\cdots\\\cdots\\\end{matrix}&\begin{matrix}a_{1n}\\a_{2n}\\\end{matrix}\\\begin{matrix}\ddots\\\cdots\\\end{matrix}&\begin{matrix}\vdots\\a_{nn}\\\end{matrix}\\\end{matrix}\right|

2. 定理

齐次线性方程组的系数行列式不为零, 则齐次线性方程组有唯一零解

即: \begin{cases} a_{11}x_1+a_{12}x_1+\cdots\ a_{1n}x_n=b_1 \\ a_{21}x_1+a_{22}x_2+\cdots\ a_{2n}x_n=b_2 \\ \cdots\cdots \\ a_{n1}x_1+a_{n2}x_2+\cdots\ a_{nn}x_n=b_n \end{cases}的系数行列式D\neq0,方程组有唯一零解

推论:\begin{cases} a_{11}x_1+a_{12}x_1+\cdots\ a_{1n}x_n=b_1 \\ a_{21}x_1+a_{22}x_2+\cdots\ a_{2n}x_n=b_2 \\ \cdots\cdots \\ a_{n1}x_1+a_{n2}x_2+\cdots\ a_{nn}x_n=b_n \end{cases}有非零解,则系数行列式D=0

3. 使用条件

(1)方程个数和未知量个数相等

(2)系数行列式D\neq0

五、范德蒙行列式

1. 范德蒙行列式形式

D_n=\left|\begin{matrix}\begin{matrix}1\\x_1\\\end{matrix}&\begin{matrix}1\\x_2\\\end{matrix}\\\begin{matrix}x_1^2\\\vdots\\x_1^{n-1}\\\end{matrix}&\begin{matrix}x_2^2\\\vdots\\x_2^{n-1}\\\end{matrix}\\\end{matrix}\ \ \ \ \begin{matrix}\begin{matrix}1\\x_3\\\end{matrix}&\begin{matrix}\cdots\\\cdots\\\end{matrix}&\begin{matrix}1\\x_n\\\end{matrix}\\\begin{matrix}x_3^2\\\vdots\\x_3^{n-1}\\\end{matrix}&\begin{matrix}\cdots\\\ \ \ \\\cdots\\\end{matrix}&\begin{matrix}x_n^2\\\vdots\\x_n^{n-1}\\\end{matrix}\\\end{matrix}\right|=\prod_{1\le i<j\le n}\left(x_j-x_i\right)

2. 其中三阶范德蒙行列式

\left|\begin{matrix}1&1&1\\a&b&c\\a^2&b^2&c^2\\\end{matrix}\right|=\left(b-a\right)\left(c-b\right)\left(c-a\right)

注:按abc顺序排列,a之前无元素,b之前有a,c之前有a、b

若有不妥之处,恳请读者批评指正

  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值