信号的正交分解到傅里叶级数(FS)
一、信号分解为正交函数
二、傅里叶级数的三角形式
由(一)可知,可将一个周期为T的信号f(T),在(t0,t0+T)内表示为三角函数集的线性组合,即:
上式即为周期信号f(t),在区间(t0,t0+T)内的三角傅里叶级数展开式。Ω=2π/T称为基波角频率。
需要指出,并非任意周期信号都能进行傅里叶级数展开。被展开的周期信号f(t)必须满足狄里赫利(Dirichlet)条件:
即在一个周期内:
(1)函数连续或只有有限个第一类间断点;
(2)函数极大值或极小值的数目应为有限个;
(3)函数是绝对可积的。
若f(t)满足狄里赫利条件,可得其各系数为:
计算得:
若对傅里叶级数进行-到
的积分,可得
解得:
这里把a0/2写成了A0,道理是一样的
周期信号f(t)与其对应的频谱:
三、傅里叶级数的指数形式(简称傅里叶级数)
三角形式的傅里叶级数含义比较明确,但运算常感不便。对于一个周期为T的信号f(t)还可以表示为指数型的傅里叶级数。
因为负指数函数集在(t0,t0+T)内为完备正交函数集,所以f(t)可被负指数函数集中各个函数的线性组合表示,其傅里叶系数Fn为:
所以f(t)可以表示为: