(二)傅里叶变换:傅里叶变换、傅里叶变换的推导 (Continuous Time Fourier Transform)

一、从傅里叶级数到(连续时间)傅里叶变换(CTFT)FS->CTFS

设某一周期信号的傅里叶系数为Fn,将f(t)展开成指数形式可得:

f(t)=\sum_{n=-\infty}^{\infty} F_ne^{jn\Omega t}

其傅里叶系数为:

F_n=\frac1T\int_{t_0}^{t_0+T}f(t)e^{-jn\Omega t}\rm dt

其中,\Omega=\frac{2\pi}{T}

两边同时乘以T,即同时除以1/T,得:

对于非周期信号,T->∞时,有:

\Omega\rightarrow \rm d \omega, n\Omega\rightarrow \omega    ①

\frac1T=\frac{\Omega}{2\pi}\rightarrow \frac{\rm d \omega}{2\pi}        ②

谱线间隔Ω趋近于无穷小dw,离散频率nΩ变成连续频率w,信号的频谱变成连续频谱。

在这种情况下,FnT=2πFn/Ω可能趋于一有限值,记作F(jw),称为频谱密度函数,简称频谱函数

首先是傅里叶系数,根据①式:

\lim_{T\rightarrow \infty}F_n(\Omega)T=F(j\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}\rm dt

(F_n*T=F_n/(1/T)=F_n/f,频谱密度即单位频率上的频谱)

 

然后是傅里叶级数,根据②式:

f(t)=\frac1{2\pi}\sum_{n=-\infty}^{\infty} F_nTe^{jn\Omega t}\frac{2\pi}{T}

当T趋于无限大,FnT变为Fjw,求和变积分,谱线间隔变微分,傅里叶级数变为:

f(t)=\frac1{2\pi}\int_{-\infty}^{\infty} F(j\omega)e^{j\omega t}\rm d\omega

 

二、傅里叶变换

将F(jw)与f(t)重新列写为一对傅里叶变换式

F(j\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}\rm dt

f(t)=\frac1{2\pi}\int_{-\infty}^{\infty} F(j\omega)e^{j\omega t}\rm d\omega

F(jw)称为f(t)的傅里叶变换,或频谱密度函数,简称频谱

f(t)称为F(jw)的傅里叶反变换原函数

频谱一般是复函数,还可写作:

|F(jw)|称为幅度谱,φ(w)称为相位谱。

 

时域连续函数与其频谱图示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值