一直对时间复杂度怎么计算不太理解,这次来梳理一下自己的思路。大部分内容是我在看一篇博客后总结复习写出来的。
一、时间复杂度
- 时间频度:时间频度是指一个算法执行的时间,T(n)表示。即输入规模为n下,所以语句加起来的所耗费的时间。
- 时间复杂度: 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
3.求解算法的时间复杂度
- 第一步,一般找出算法中执行次数最多的基本语句。(通常为最内层循环)如判断不了,可以将每条语句的执行次数计算出来。
- 第二步,计算这条语句执行的次数。得出算法的T(n)时间频度。
- 第三步,化简掉T(n),得出O(n)。
4.在计算算法时间复杂度时有以下几个简单的程序分析法则:
(1).对于一些简单的输入输出语句或赋值语句,近似认为需要O(1)时间
(2).对于顺序结构,需要依次执行一系列语句所用的时间可采用大O下"求和法则"
求和法则:是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1(n)+T2(n)=O(max(f(n), g(n)))
特别地,若T1(m)=O(f(m)), T2(n)=O(g(n)),则 T1(m)+T2(n)=O(f(m) + g(n))
(3).对于选择结构,如if语句,它的主要时间耗费是在执行then字句或else字句所用的时间,需注意的是检验条件也需要O(1)时间
(4).对于循环结构,循环语句的运行时间主要体现在多次迭代中执行循环体以及检验循环条件的时间耗费,一般可用大O下"乘法法则"
乘法法则: 是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1*T2=O(f(n)*g(n))
(5).对于复杂的算法,可以将它分成几个容易估算的部分,然后利用求和法则和乘法法则技术整个算法的时间复杂度
另外还有以下2个运算法则:(1) 若g(n)=O(f(n)),则O(f(n))+ O(g(n))= O(f(n));(2) O(Cf(n)) = O(f(n)),其中C是一个正常数
写得不咋好啊T T,继续努力吧。
转载自:http://blog.csdn.net/zolalad/article/details/11848739