【力扣每日一题】417. 太平洋大西洋水流问题

题目描述

有一个 m × n 的矩形岛屿,与 太平洋大西洋 相邻。 “太平洋” 处于大陆的左边界和上边界,而 “大西洋” 处于大陆的右边界和下边界。

这个岛被分割成一个由若干方形单元格组成的网格。给定一个 m x n 的整数矩阵 heightsheights[r][c] 表示坐标 (r, c) 上单元格 高于海平面的高度

岛上雨水较多,如果相邻单元格的高度 小于或等于 当前单元格的高度,雨水可以直接向北、南、东、西流向相邻单元格。水可以从海洋附近的任何单元格流入海洋。

返回 网格坐标 result 的 2D列表 ,其中 result[i] = [ri, ci] 表示雨水可以从单元格 (ri, ci) 流向 太平洋和大西洋

示例 1:

在这里插入图片描述

输入: heights = [[1,2,2,3,5],[3,2,3,4,4],[2,4,5,3,1],[6,7,1,4,5],[5,1,1,2,4]]
输出: [[0,4],[1,3],[1,4],[2,2],[3,0],[3,1],[4,0]]

示例 2:

输入: heights = [[2,1],[1,2]]
输出: [[0,0],[0,1],[1,0],[1,1]]

提示:

  • m == heights.length
  • n == heights[r].length
  • 1 <= m, n <= 200
  • 0 <= heights[r][c] <= 10^5

我一开始想要用DFS,对于每个坐标的点,都要向左上和右下去探索,看看能不能到达边界。但具体代码怎么写呢?不晓得啊。直接看官方解法吧。(开摆ing。。。)

官方

官方用了DFS和BFS两种方法,水从格子能流到大洋是用DFS,反过来水从大洋能流回格子是用BFS。这里引荐两种方法,具体代码日后再慢慢分析。

DFS

class Solution {
    static int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    int[][] heights;
    int m, n;

    public List<List<Integer>> pacificAtlantic(int[][] heights) {
        this.heights = heights;
        this.m = heights.length;
        this.n = heights[0].length;
        boolean[][] pacific = new boolean[m][n];
        boolean[][] atlantic = new boolean[m][n];
        for (int i = 0; i < m; i++) {
            dfs(i, 0, pacific);
        }
        for (int j = 1; j < n; j++) {
            dfs(0, j, pacific);
        }
        for (int i = 0; i < m; i++) {
            dfs(i, n - 1, atlantic);
        }
        for (int j = 0; j < n - 1; j++) {
            dfs(m - 1, j, atlantic);
        }
        List<List<Integer>> result = new ArrayList<List<Integer>>();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (pacific[i][j] && atlantic[i][j]) {
                    List<Integer> cell = new ArrayList<Integer>();
                    cell.add(i);
                    cell.add(j);
                    result.add(cell);
                }
            }
        }
        return result;
    }

    public void dfs(int row, int col, boolean[][] ocean) {
        if (ocean[row][col]) {
            return;
        }
        ocean[row][col] = true;
        for (int[] dir : dirs) {
            int newRow = row + dir[0], newCol = col + dir[1];
            if (newRow >= 0 && newRow < m && newCol >= 0 && newCol < n && heights[newRow][newCol] >= heights[row][col]) {
                dfs(newRow, newCol, ocean);
            }
        }
    }
}

BFS

class Solution {
    static int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    int[][] heights;
    int m, n;

    public List<List<Integer>> pacificAtlantic(int[][] heights) {
        this.heights = heights;
        this.m = heights.length;
        this.n = heights[0].length;
        boolean[][] pacific = new boolean[m][n];
        boolean[][] atlantic = new boolean[m][n];
        for (int i = 0; i < m; i++) {
            bfs(i, 0, pacific);
        }
        for (int j = 1; j < n; j++) {
            bfs(0, j, pacific);
        }
        for (int i = 0; i < m; i++) {
            bfs(i, n - 1, atlantic);
        }
        for (int j = 0; j < n - 1; j++) {
            bfs(m - 1, j, atlantic);
        }
        List<List<Integer>> result = new ArrayList<List<Integer>>();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (pacific[i][j] && atlantic[i][j]) {
                    List<Integer> cell = new ArrayList<Integer>();
                    cell.add(i);
                    cell.add(j);
                    result.add(cell);
                }
            }
        }
        return result;
    }

    public void bfs(int row, int col, boolean[][] ocean) {
        if (ocean[row][col]) {
            return;
        }
        ocean[row][col] = true;
        Queue<int[]> queue = new ArrayDeque<int[]>();
        queue.offer(new int[]{row, col});
        while (!queue.isEmpty()) {
            int[] cell = queue.poll();
            for (int[] dir : dirs) {
                int newRow = cell[0] + dir[0], newCol = cell[1] + dir[1];
                if (newRow >= 0 && newRow < m && newCol >= 0 && newCol < n && heights[newRow][newCol] >= heights[cell[0]][cell[1]] && !ocean[newRow][newCol]) {
                    ocean[newRow][newCol] = true;
                    queue.offer(new int[]{newRow, newCol});
                }
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值