题目描述
在无限长的数轴(即 x 轴)上,我们根据给定的顺序放置对应的正方形方块。
第 i
个掉落的方块(positions[i] = (left, side_length)
)是正方形,其中 left 表示该方块最左边的点位置(positions[i][0]),side_length 表示该方块的边长(positions[i][1])。
每个方块的底部边缘平行于数轴(即 x 轴),并且从一个比目前所有的落地方块更高的高度掉落而下。在上一个方块结束掉落,并保持静止后,才开始掉落新方块。
方块的底边具有非常大的粘性,并将保持固定在它们所接触的任何长度表面上(无论是数轴还是其他方块)。邻接掉落的边不会过早地粘合在一起,因为只有底边才具有粘性。
返回一个堆叠高度列表 ans
。每一个堆叠高度 ans[i]
表示在通过 positions[0], positions[1], ..., positions[i]
表示的方块掉落结束后,目前所有已经落稳的方块堆叠的最高高度。
示例 1:
输入: [[1, 2], [2, 3], [6, 1]]
输出: [2, 5, 5]
解释:
第一个方块 positions[0] = [1, 2] 掉落:
_aa
_aa
-------
方块最大高度为 2 。
第二个方块 positions[1] = [2, 3] 掉落:
__aaa
__aaa
__aaa
_aa__
_aa__
--------------
方块最大高度为5。
大的方块保持在较小的方块的顶部,不论它的重心在哪里,因为方块的底部边缘有非常大的粘性。
第三个方块 positions[1] = [6, 1] 掉落:
__aaa
__aaa
__aaa
_aa
_aa___a
--------------
方块最大高度为5。
因此,我们返回结果[2, 5, 5]。
示例 2:
输入: [[100, 100], [200, 100]]
输出: [100, 100]
解释: 相邻的方块不会过早地卡住,只有它们的底部边缘才能粘在表面上。
注意:
1 <= positions.length <= 1000
.1 <= positions[i][0] <= 10^8
.1 <= positions[i][1] <= 10^6
.
一看是困难题,有点害怕,不过仔细看了一下,发现还能理解。
这道题就是求一个最大高度,我本来想着是存储已经落下的方块导致的每一个x轴坐标的高度,后来发现这太麻烦了,因为数字的范围太大,这么做势必会超时。想来想去,还是直接看了官方的解法。
官方的方法一是暴力枚举:就是对于每一个方块,枚举之前的方块中和其有重叠部分的方块,判断堆叠高度,更新最大高度,这样每一个方块的最大高度就可以确定下来。然后从头开始,遍历高度表,把每一个位置都修改为从开始到当前位置出现过的最大高度。
class Solution {
public List<Integer> fallingSquares(int[][] p) {
int n = p.length;
List<Integer> heights = new ArrayList<Integer>();
for(int i=0;i<n;i++){
//计算每个正方体的左右边界
int left1 = p[i][0],right1 = p[i][1]+p[i][0]-1;
int height = p[i][1];
for(int j=0;j<i;j++){
int left2 = p[j][0],right2 = p[j][1]+p[j][0]-1;
//判断两个正方体是否有重叠
if(right1>=left2 && right2>=left1){
//当前高度和叠加高度作比较,更新最高高度
height = Math.max(height,heights.get(j)+p[i][1]);
}
}
heights.add(height);
}
for(int i=1;i<n;i++){
//每一次遍历求出到当前为止的最高高度
heights.set(i,Math.max(heights.get(i),heights.get(i-1)));
}
return heights;
}
}
这里面有一些细节,比如右边界的right是等于p[i][1]+p[i][0]-1,之所以要减一,是因为向相邻的方块不会卡在一起,但如果就按照正常的宽度计算相邻的方块也是算作有交集的,所以在写法上要故意缩小一格宽度,以对应题目的意思。
然后在最后求最终答案时,又用了一个常规的小策略,两两比较,这个和前缀和的求法有点像,只是前者是求最大值,后者是不断求和。
至于第二种方法我不是特别理解,这里暂时先把第一种好好理解一下。顺便结束这两三天的放肆,重新开始刷题之旅。