新手速成---TensorFlow实现jaffe表情识别--step2补充+step3+step4

觉得上一篇写的太粗糙了,补充点内容
网络结构
[48×48]⇀conv2d[3×3]×128⇀pooling⇀conv2d[5×5]×64⇀pooling⇀conv2d[3×3]×32⇀pooling⇀fc[6×6×32]×200⇀dropout⇀softmax[200×7]
其实我训练了两种,epoch=50 和epoch=100,结果显示,epoch=100时结构更好(网上都是50)
epoch=50时
Epoch: 45, Loss= 21.501, Training Accuracy= 0.800
Epoch: 45, Test Loss= 27.431, Test Accuracy= 0.550
Epoch: 46, Loss= 20.672, Training Accuracy= 0.800
Epoch: 46, Test Loss= 26.583, Test Accuracy= 0.600
Epoch: 47, Loss= 21.156, Training Accuracy= 0.750
Epoch: 47, Test Loss= 26.609, Test Accuracy= 0.550
Epoch: 48, Loss= 21.344, Training Accuracy= 0.850
Epoch: 48, Test Loss= 26.205, Test Accuracy= 0.650
Epoch: 49, Loss= 19.028, Training Accuracy= 0.850
Epoch: 49, Test Loss= 25.373, Test Accuracy= 0.700
Epoch: 50, Loss= 19.698, Training Accuracy= 0.800
Epoch: 50, Test Loss= 25.467, Test Accuracy= 0.550
All is well
测试精度:0.5-0.6

Epoch=100
Learn rate=0.0001

在这里插入图片描述

精度:0.8

折线图显示
在这里插入图片描述

折线图咋来的
在上一篇的代码里,最下面所有和plot相关的,输出折线图
日志
所有跟summary相关的,构成了日志文件,改个路径就行了,日志文件的目的:用于tensorboard的可视化显示,需要先读取网络的日志文件夹。

step4 网络模型的查看

首先我是参考的这篇文章(https://blog.csdn.net/u012679707/article/details/79898530)
直接从他的(3)开始操作就行

  1. 启动CMD,cd 到log文件的上一级目录
  2. 激活TensorFlow
  3. tensorboard --logdir=logs

会出现具体的地址,这时候直接打开谷歌浏览器,输入localhost:6006即可

注意!

这里就是输入localhost,不是你五花八门的主机名,同时,要把自己的本地计算机名字改成localhost重启下,tensorboard就可以出来了。
我的模型长这个样子:
在这里插入图片描述

总结

今天终于把这个作业交了,写个总结吧。整个写作业的时间持续了一周,每天过的还是很痛苦的,但现在回想起来,也没有当初的那么惧怕了,虽然我核心的东西还没有掌握,但我拿到代码最起码不会像之前的那样手足无措了。说到底,我们是对于未知的恐惧,博主硕士水利工程专业在读,之前从未接触过这方面的东西,我知道,我的这篇文章在专业人士看来,连点开的必要都没有,但我仍然想把我这一周的收获分享给大家,希望大家在面临新领域,新难题的时候,都可以战胜对于未知的恐惧,战胜自己的心。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页