排序:
默认
按更新时间
按访问量

Ubuntu:QT界面+OpenCV3图像/视频处理

环境:Ubuntu16.04+QT5.8+Opencv3.3.1 实现功能:建立一个QT界面,打开指定路径下的图片,点击处理后对图像进行相应处理(如,变成灰度图像),点击按钮关闭界面. 创建项目 首先新建一个项目,选择Qt Widgets Application: 然后,选择’项目’,...

2018-06-20 19:46:27

阅读数:12

评论数:0

人脸识别:SeetaFace配置——人脸检测模块SeetaFace Detection(win7/c++)

SeetaFace是山世光研究组的开源人脸识别引擎guthub地址:github:SeetaFaceEngine win7/c++环境搭建: SeetaFace Detection

2018-06-14 20:27:49

阅读数:8

评论数:0

opencv3/C++ 使用Tracker进行简单目标跟踪

MIL算法以在线方式训练分类器以将对象与背景分离。从实际情况看来,算法对过程中有遮挡的情况跟踪能力较差. 相关API: static Ptr<TrackerMIL> ...

2018-06-13 15:21:48

阅读数:64

评论数:0

Halcon视觉检测——PCB板处理:获取焊点及线路端点

要求 获取PCB板上的焊点以及线路端点,如图: 函数 涉及到的主要函数有: access_channel() 获取一个多通道图像的一个通道。 skeleton() 计算一个区域的框架。 junctions_skeleton() 找到骨架中的结点和终点。 示例: read_...

2018-06-11 14:55:15

阅读数:52

评论数:0

Ubuntu16.04 配置QT+OpenCV3.3.1遇到的问题及解决方法

问题1:QT+OpenCV配置 新建一个工程,在“.pro”文件中配置OpenCV的库文件: INCLUDEPATH += /usr/local/include \ /usr/local/include/opencv \ /usr/local/include/opencv2 LIBS += ...

2018-06-04 21:09:29

阅读数:47

评论数:0

Keras:在预训练的网络上fine-tune

Keras:自建数据集图像分类的模型训练、保存与恢复 Keras:使用预训练网络的bottleneck特征 准备 fine-tune的三个步骤: 搭建vgg-16并载入权重; 将之前定义的全连接网络加载到模型顶部,并载入权重; 冻结vgg16网络的一部分参数. 在之前的Keras:自...

2018-06-01 11:18:17

阅读数:71

评论数:0

Keras:ValueError: Negative dimension size caused by subtracting 2 from 1 for

使用keras时遇到如下错误: ValueError: Negative dimension size caused by subtracting 2 from 1 for 'block2_pool/MaxPool' (op: 'MaxPool') with input shapes: [?...

2018-05-31 22:30:22

阅读数:86

评论数:0

Xception:Deep Learning with Depthwise Separable Convolutions/深度可分离卷积

Xception在论文Xception: Deep Learning with Depthwise Separable Convolutions中被提出.Xception是对Inception V3的一种改进.主要将Inception V3中的Inception结构替换为depthwise sep...

2018-05-31 19:01:55

阅读数:33

评论数:0

Keras:使用预训练网络的bottleneck特征

使用预训练网络的bottleneck特征 bottleneck特征 通过 from keras.applications.vgg16 import VGG16 from keras.utils import plot_model model = VGG16(include_top=Tru...

2018-05-31 09:59:33

阅读数:64

评论数:0

opencv3/C++ 将图片转换为视频

现有一些图片按顺序放置在一文件夹jogging1\下,如图: 需要将其合并转换为一个视频。 示例: 环境:Win7+OpenCV3+VS2012 #include<opencv2/opencv.hpp> #include &...

2018-05-26 19:38:14

阅读数:33

评论数:0

Keras:自建数据集图像分类的模型训练、保存与恢复

数据扩增 使用图片生成器ImageDataGenerator用来生成一个batch的图像数据,进行数据扩增. 示例: from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, l...

2018-05-26 13:48:28

阅读数:92

评论数:0

Keras:UserWarning: Update your `Conv2D` call to the Keras 2 API...

使用Keras时用到了卷积层Convolution2D( )以及Model.fit( ): x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x) Model.fit(x_train, x_train, nb...

2018-05-22 15:13:41

阅读数:55

评论数:0

Keras:使用InceptionV3、ResNet50模型进行图片分类

用Keras构建网络并使用其提供的预训练权重进行简单的图像分类. 其中decode_predictions()将结果解码为元组列表,内容包括(类别,描述,概率). 使用InceptionV3进行图片分类 #!/usr/bin/python # coding:utf8 from keras....

2018-05-20 22:07:49

阅读数:73

评论数:0

opencv3/python 鼠标响应操作

鼠标回调函数: def setMouseCallback( windowName, #窗口名称 onMouse, #鼠标响应处理函数 param=None) #处理函数的ID event鼠标事件: event: EVENT_LBUTT...

2018-05-14 22:14:12

阅读数:41

评论数:0

c++ 计算几何图形面积(抽象类、虚函数的使用)

将一些类所具有的公共属性和方法放到基类中,避免重复定义。 定义基类Shape,在类中定义两个函数getName()、getArea()。分别用来获得类名称和面积。将getArea()定义为一个纯虚函数。 #include "stdafx.h" #incl...

2018-05-02 14:02:52

阅读数:99

评论数:0

Halcon视觉检测——基于灰度的模板匹配

任务:选出图中的白色圆形区域; 使用基于灰度的模板匹配,主要使用以下算子: add_channels() ——把灰度值添加到区域中。 best_match() ——寻找一个模板和一个图像的最佳匹配。 dev_clear_window () read_image (Image, '...

2018-05-01 11:09:43

阅读数:105

评论数:0

Halcon视觉检测——使用分类器分类

分类器简介 机器学习在Helcon中的一个重要应用就是用于图像分类任务。Halcon中常用的分类器有GMM(高斯混合模型)、Neural Nets(神经网络)、SVM(支持向量机)等。一般应付常见的分类问题,这些就足够了。 使用方法 一般使用过程: 创建分类器(create_clas...

2018-04-25 18:44:56

阅读数:250

评论数:0

表情识别--JAFFE数据集3:keras训练CNN网络

在上上一篇表情识别–JAFFE数据集1中,将JAFFE数据集中的人脸区域获取,并转换为.csv文件存储.face.csv 使用keras建立多层CNN网络对表情数据进行训练. 网络结构为:  [48×48]⇀conv2d[5×5]×32⇀poolin...

2018-04-21 11:33:56

阅读数:116

评论数:0

表情识别--JAFFE数据集2:tensorflow训练CNN网络

在上一篇表情识别–JAFFE数据集1中,将JAFFE数据集中的人脸区域获取,并转换为.csv文件存储.face.csv 使用tensorflow建立多层CNN网络对表情数据进行训练. 网络结构为:  [48×48]⇀conv2d[5×5]×32⇀pooling⇀co...

2018-04-16 22:13:01

阅读数:130

评论数:0

表情识别--JAFFE数据集1

JAFFE数据集一共有213张图像.选取了10名日本女学生,每个人做出7种表情.7种表情包括: Angry,Disgust,Fear,Happy,Sad,Surprise,Neutral.(愤怒,厌恶,恐惧,高兴,悲伤,惊讶,中性) 裁剪保存人脸 将人脸区域裁剪出,去除多余干扰,然后将获得...

2018-04-16 10:44:00

阅读数:254

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭