hdu 3306 Another kind of Fibonacci 矩阵连乘

本文探讨了通过矩阵运算解决二次序列求和问题的方法,包括构造矩阵、推导矩阵形式以及实现矩阵快速幂运算来简化计算过程。

复习下矩阵!!哎,都忘光了。

题意:输入x,y,n的值,给定公式f[0]=f[1]=1;f[n]=x*f[n-1]+y*f[n-2](n>=2);求s[n]=f[0]^2+f[1]^2+...+f[n]^2;的值。

题解:矩阵的题就是想方法构造矩阵。这题出现f[n]^2,所以要推导下。f[n]^2=(x*f[n-1]+y*f[n-2])^2=x^2*f[n-1]^2+y^2*f[n-2]^2+2*x*y*f[n-1]*f[n-2];由于其中的f[n-1]*f[n-2]不能直接从f[n-1]和f[n-2]矩阵连乘得到,所以还需要推f[n]*f[n-1]=(x*f[n-1]+y*f[n-2])*f[n-1]=x*f[n-1]^2+y*f[n-1]*f[n-2];

以此我们可以得到矩阵矩阵:

                                        
|f[n-1]^2 f[n-2]^2 f[n-1]*f[n-2] s[n-2]|*

|x^2 1 x 1|

|y^2 0 0 0|

|2xy 0 y 0|
|0   0 0 1|

=|f[n]^2 f[n-1]^2 f[n]*f[n-1] s[n-1]|

好坑的排版大哭

代码:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
using namespace std;
#define LL __int64
const int mod=10007;
struct matrix{
    LL f[4][4];
};
matrix mul(matrix a,matrix b)//矩阵乘法
{
    int i,j,k;
    matrix c;
    memset(c.f,0,sizeof(c.f));
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            for(k=0;k<4;k++)
            {
                c.f[i][j]+=a.f[i][k]*b.f[k][j];
                c.f[i][j]%=mod;
            }
        }
    }
    return c;
}
matrix pow_mod(matrix a,int b)//矩阵连乘
{
    matrix s;
    int i,j;
    memset(s.f,0,sizeof(s.f));
    for(i=0;i<4;i++)
        s.f[i][i]=1;
    while(b)
    {
        if(b&1)
            s=mul(s,a);
        a=mul(a,a);
        b=b>>1;
    }
    return s;
}
int main()
{
    int x,y,n;
    while(scanf("%d%d%d",&n,&x,&y)!=EOF)
    {
        int i,j,k;
        matrix e;
        memset(e.f,0,sizeof(e.f));
        x=x%mod;y=y%mod;
        //建矩阵
        e.f[0][0]=x*x%mod;e.f[1][0]=y*y%mod;e.f[2][0]=2*x*y%mod;
        e.f[0][1]=e.f[0][3]=e.f[3][3]=1;e.f[0][2]=x;e.f[2][2]=y;
        e=pow_mod(e,n);
        printf("%I64d\n",(e.f[0][3]+e.f[1][3]+e.f[2][3]+e.f[3][3])%mod);
    }
    return 0;
}

/*
                                         |x^2 1 x 1|
|f[n-1]^2 f[n-2]^2 f[n-1]*f[n-2] s[n-2]|*|y^2 0 0 0|=|f[n]^2 f[n-1]^2 f[n]*f[n-1] s[n-1]|
                                         |2xy 0 y 0|
                                         |0   0 0 1|
*/


### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值