ICLR 2017 | 使用卷积图网络的半监督分类方法

本文《Semi-Supervised Classification with Graph Convolutional Networks》受到卷积神经网络的启发,提出了卷积神经网络的变种方法,可以直接在图结构的数据上直接进行计算. 模型的计算复杂度与图结构边(edges)的数量呈线性增长. 隐层节点的参数权重可以用来表达子图(local graph)的特征或是节点(nodes)的特征.

论文地址:
https://arxiv.org/pdf/1609.02907.pdf

引言

在现实世界中,有许多数据的结构可以被当作是图结构. 例如, 文章与文章之间的关系. 可以把每篇文章看作是图结构中的节点; 而每篇文章的所属的学科(“数学”, “文学”, “生物”, “历史”等等)可以被看作是节点的类别(label); 此外, 每篇文章是否包含特定关键词的列表向量可以看作是节点的特征(feature); 文章与文章之间的引用关系可以形成一个邻接矩阵(adjacency matrix).

数据集

引用网络数据集有Citeseer, Cora, Pubmed. 知识图类型的数据集有NELL.

例如: Cora中的Features维度为1433, 指的是每篇文章用固定的1433个关键词来表征, 文章中出现了某个关键词, 则在该维度上置为1, 否则为0.

想法的来源

图的定义

G r a p h : G = ( V , E ) Graph: G=(V, E) Graph:G=(V,E)

V代表节点, N为节点个数, E代表边.
邻接矩阵A的定义:

一个最简单想法

假设邻接矩阵为A, 节点的特征为 X ∈ R N × E X \in \mathbb{R}^{N \times E} XRN×E
[ X , A ] [X, A] [X,A]拼接在一起作为全连接网络的输入, X i n = [ X , A ] ∈ R N × ( N + E ) ​ X_{in}=[X,A]\in \mathbb{R}^{N\times(N+E)}​ Xin=[X,A]RN×(N+E) , 则如下图所示:

这样处理的问题在于, 有时网络节点的个数极其巨大, 导致网络的参数量也会急剧增加.此外, 网络的输入节点会随着图节点个数的变化而变化, 只要节点个数一变, 网络就需要重新训练. 丝毫没有泛化能力.

CNN的思想

CNN在图像领域取得了很好的实践效果, 其最重要的思想便是”权重共享(weight sharing)”, 将同一组参数运用在图像的不同位置.


假设CNN的卷积核为3x3, 那么对于中间点的激励,只与其自身和它周围的点会参与计算.

将CNN的思想用在图结构上


GCN借助CNN共享权重的想法, 某个节点的激励只与它自身和与它邻接的节点有关. 与CNN类似的, 得到下式:

其中, W是可训练参数, h是节点的特征, σ \sigma σ是激励函数.
此时当图节点的个数发生变化时, 只需要改变邻接矩阵, 而训练好的权重可以重复利用.
写成矩阵的形式:

如果将自身节点与邻接节点同等对待:

模型的整体结构


以Cora分类为例, 输入 X ∈ R 2708 × 1433 X\in \mathbb{R}^{2708 \times 1433} XR2708×1433, A ^ ∈ R 2708 × 2708 \hat{A} \in \mathbb{R}^{2708 \times 2708} A^R2708×2708.
假设隐层维度为16, 分类层维度为7, 则可训练的参数总数为:(1433x16 + 16 + 16x7 + 7).

实验结果


因为是半监督学习, 所有的样本都会参与训练, 但是只有一小部分的样本是有标签的(Label rate). 没有加上标签的数据均被作为验证集(validation dataset). 以Cora为例, 只有140篇文章有标签(2708*0.052). 但是邻接矩阵是完全已知的(2708 X 2708).

可以看到GCN在各个数据集上的表现均大幅超越了以前的方法.

结论

(1)本文提出了一种用于图结构数据的半监督分类的新方法GCN(Graph Convolution Network).
(2)该方法具有良好的扩展性, 在标准数据集上的表现也大幅领先与同期的其他方法.


在这里插入图片描述
扫码识别关注,获取更多论文解读

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值