如何在vscode中对在服务器上多卡运行的bash脚本进行debug?

问题描述

使用vscode可以很方便地添加断点,进行代码调试。
在使用服务器时,我们的python代码通常是通过bash脚本来执行的,那么如何进行debug呢?

待运行的bash 脚本示例

前半段定义了一些参数,后半段是执行python代码

export CUDA_VISIBLE_DEVICES=1,2
model_path=/models/Mistral-7B-Instruct-v0.2/
output_path=/project/datagen/evaluation/mmlu
data_path=/mmlu_data

python -m eval_mmlu.py \
    --model ${model_path} \
    --data_dir ${data_path} \
    --save_dir ${output_path} \
    --ntrain 5 \
    --subject elementary_mathematics \

如果我们想要运行bash脚本的同时进行调试python代码,很可惜,右上角并没有类似调试python文件时的虫虫debug符号
在这里插入图片描述

解决方式

第零步,下载debugpy

pip install debugpy

第一步,修改launch.json文件

输入ctrl + p, 查找launch.json文件,用于配置调试设置

{
    // 使用 IntelliSense 了解相关属性。 
    // 悬停以查看现有属性的描述。
    // 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linkid=830387
    "version": "0.2.0",
    "configurations": [
        {
            "name": "Python 调试程序: 当前文件",
            "type": "debugpy",
            "request": "attach",
            "connect": {
				"host": "localhost",
				"port": 8890
			}
        }
    ]
}

我们在本地的8890端口上开放了调试连接。使用这个配置,VS Code的调试器将尝试连接到这个运行中的程序,允许你进行调试

第二步,修改bash脚本

在执行python文件前加上

-m debugpy --listen localhost:8890 --wait-for-client \

完整代码如下

export CUDA_VISIBLE_DEVICES=1,2
model_path=/models/Mistral-7B-Instruct-v0.2/
output_path=/project/datagen/evaluation/mmlu
data_path=/mmlu_data

python -m debugpy --listen localhost:8890 --wait-for-client \
    eval_mmlu.py \
    --model ${model_path} \
    --data_dir ${data_path} \
    --save_dir ${output_path} \
    --ntrain 5 \
    --subject elementary_mathematics \

通过使用debugpy并在8890端口上监听,这个脚本允许VS Code连接并进行远程调试,这与之前提到的launch.json配置相匹配。

  • 10
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要将 PyTorch 单机单卡的脚本修改为单机多卡,需要执行以下步骤: 1. 导入必要的库和设定参数 ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms # 设定参数 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") batch_size = 64 epochs = 10 learning_rate = 0.01 ``` 2. 加载数据集并进行数据增广 ```python # 加载数据集 train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor()) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor()) # 数据增广 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True) ``` 3. 定义模型和损失函数 ```python # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x # 定义损失函数 criterion = nn.CrossEntropyLoss() ``` 4. 初始化模型和优化器 ```python # 初始化模型和优化器 model = Net().to(device) if torch.cuda.device_count() > 1: model = nn.DataParallel(model) optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) ``` 5. 训练模型 ```python # 训练模型 for epoch in range(epochs): model.train() train_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) train_loss /= len(train_loader.dataset) print('Epoch: {} \tTraining Loss: {:.6f}'.format(epoch+1, train_loss)) ``` 6. 测试模型 ```python # 测试模型 model.eval() correct = 0 total = 0 with torch.no_grad(): for inputs, labels in test_loader: inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print('Accuracy: %.2f%%' % accuracy) ``` 在第四步,我们使用了 `nn.DataParallel` 函数来将模型在多个 GPU 上并行计算。当有多个 GPU 时,PyTorch 会自动将 batch 拆分到不同的 GPU 上进行计算,然后将结果合并。在使用 `nn.DataParallel` 时,需要将模型包装在 `nn.DataParallel` ,然后将其移到 GPU 上。如果只有一个 GPU,则不需要使用 `nn.DataParallel`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值