黑白如径题解

目录

重要说明:本文提到#define的作用和using xxx = xxx的作用不会的请看:不会#define的作用戳我,不会using xxx=xxx的作用戳我

时间:1s 空间:256M

题目描述:

输入格式:

输出格式:

样例1输入:

约定与提示:

主要思路:

注:十年OI一场空,不开xx见祖宗。

上代码(有注释):


重要说明:本文提到#define的作用和using xxx = xxx的作用不会的请看:不会#define的作用戳我不会using xxx=xxx的作用戳我

时间:1s 空间:256M

题目描述:

有一个n*m的矩阵,矩阵中有两种颜色:黑('#'),白('.')

小信选了一个黑色位置 s,坐标为(x_s,y_s)。当小信移动时,他可以往 4 个方向(上下左右)行进,但还有一个要求:假设当前小信从(x_1,y_1)出发,他之后停下的位置坐标为(x_2,y_2),要求 (x_1,y_1)与 (x_2,y_2)的颜色不同。

具体图例:

图例

最终小信会在白色位置t,坐标为 (x_t,y_t)停下。

请问有多少对(s,t)可以从s走到 t

输入格式:

第一行包含两个整数n,m

接下来包含一个n*m 的矩阵。

输出格式:

输出一个整数表示答案。

样例1输入:

4 3

###

###

...

###

样例1输出:

样例2输入:

3 3

.#.

..#

#.. 

样例2输出:

10

约定与提示:

对于100%的数据,1\le n,m \le 400

对于样例1:其中一条路径为(2,1)->(3,1)

主要思路:

从题面上看,一看就知道是搜索,我们可以求一个和法的连通块(连通块说明(针对此题):就是设(x1,y1)能到(x2,y2)则路径上的点(包括起点和终点)就是一个连通块)注:(一个点在所有的连通块内只出现一次),接着根据乘法原理把连通块内的"#"的个数乘上连通块内的"."的个数就可以了。

注:十年OI一场空,不开xx见祖宗。

上代码(有注释):

//只有C++11,C++14,C++17,C++20才能使用using xxx=xxx
#include<bits/stdc++.h>
using namespace std; 
//一堆几乎没用的东西。 
#define ri register int
#define makedx4 int dx[]={0,-1,0,1}
#define makedy4 int dy[]={-1,0,1,0}
#define makedx8 int dx[]={0,-1,0,1,1,-1,1,-1}
#define makedy8 int dy[]={-1,0,1,0,1,-1,-1,1}
using ll=long long;
using ld = long double;
using d = double;
using f = float;
using pii=pair<int,int>;
using vi=vector<int>;
using si=set<int>;
using mii=map<int,int>;
using stint = stack<int>;
using queint = queue<int>;
using pqup = priority_queue<int,vector<int>,greater<int>>;
using pqdown = priority_queue<int,vector<int>,less<int>>;
using mci = map<char,int>;
using msi = map<string,int>;
using mic = map<int,char>;
using mis = map<int,string>;
//以下是主要部分 
int n,m;//定义长和宽的变量 
char a[410][410];//存字符矩阵 
mci mp;//记录一个连通块中"."的数量和"#"的数量 
int vis[410][410];//标记当前这个点有没有出现在连通块里过 
//定义方向数组 
makedx4;
makedy4;
void dfs(int x,int y)//dfs 
{
	mp[a[x][y]]++;//将当前的颜色数量+1 
	for(int i=0;i<4;i++)//枚举四个方向 
	{
		int nowx=x+dx[i],nowy=y+dy[i];//记录备选新位置 
		if(nowx<1||nowx>n||nowy<1||nowy>m||vis[nowx][nowy]||a[x][y] == a[nowx][nowy])//如果不和法 
		{
			continue;//跳出 
		}
		vis[nowx][nowy] = 1;//否则标记当前点已经出现在连通块中过了 
		dfs(nowx,nowy);//dfs下一个
		//注意,没有回溯 
	}
}
int main()
{
	cin>>n>>m;//输入 
	for(int i=1;i<=n;i++)
	{
		cin>>a[i]+1;//读入矩阵 
	}
	long long ans=0;//十年OI一场空,不开xx见祖宗。
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			if(!vis[i][j])//如果没有出现在连通块中过,就当成一个新的连通块起点 
			{
				mp['.'] = 0;//归零,因为是一个新的连通块 
				mp['#'] = 0;
				vis[i][j] = 1;//起点要先标记 
				dfs(i,j);//dfs,启动! 
				ans+=1LL*mp['.']*mp['#'];//计算连通块的路径数量 
			}
		}
	}
	cout<<ans;//输出 
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值