1.Linear Regression (Cost Function):
J(θ) = (1/2m) ∑( (m;i=1)(H_θ(xi) - yi)**2 )
2.Logistic Regression (Cost Function):
Cost(H_θ(x), y) = { -log(H_θ(x)) if y = 1; -log(1 - H_θ(x)) if y = 0}

so, to summaries, the formal formula is:

本文深入探讨了机器学习中两种基本的回归方法:线性回归与逻辑回归。详细解析了成本函数的数学表达,包括线性回归的平方误差损失和逻辑回归的对数损失函数。适合初学者入门及进阶学习。


3万+
2823

被折叠的 条评论
为什么被折叠?