Cost Function

本文深入探讨了机器学习中两种基本的回归方法:线性回归与逻辑回归。详细解析了成本函数的数学表达,包括线性回归的平方误差损失和逻辑回归的对数损失函数。适合初学者入门及进阶学习。

1.Linear Regression (Cost Function):
J(θ) = (1/2m) ∑( (m;i=1)(H_θ(xi) - yi)**2 )
2.Logistic Regression (Cost Function):
Cost(H_θ(x), y) = { -log(H_θ(x)) if y = 1; -log(1 - H_θ(x)) if y = 0}

so, to summaries, the formal formula is:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值