莫队算法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/a634771197/article/details/21175607

小Z的袜子  


参考: http://www.cnblogs.com/kuangbin/archive/2013/08/16/3263483.html

题目链接:http://www.tsinsen.com/A1206

离线算法

unit=sqrt(n),把区间分成长度为util的块,将m个询问先按所在块排序,再按R排序

然后直接求解,看代码体会一下,我还没有明白


#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<cmath>
#define LL long long
#define N 100005
using namespace std;
LL unit,m,n,a[N],num[N];
struct query {
    LL L,R,id;
}q[N];
struct node{
    LL a,b;
}ans[N];
bool cmp(query a,query b){
    if(a.L/unit!=b.L/unit)
    return a.L/unit<b.L/unit;
    return a.R<b.R;
}
LL gcd (LL x,LL y){
    if(y==0)
    return x;
    return gcd(y,x%y);
}
void solve(){
    LL tmp=0;
    memset(num,0,sizeof(num));
    LL i,L=1,R=0;
    for(i=0;i<m;i++){
        while(R<q[i].R){
            R++;
            tmp-=num[a[R]]*num[a[R]];
            num[a[R]]++;
            tmp+=num[a[R]]*num[a[R]];
        }
        while(R>q[i].R){
            tmp-=num[a[R]]*num[a[R]];
            num[a[R]]--;
            tmp+=num[a[R]]*num[a[R]];
            R--;
        }
        while(L<q[i].L){
            tmp-=num[a[L]]*num[a[L]];
            num[a[L]]--;
            tmp+=num[a[L]]*num[a[L]];
            L++;
        }
        while(L>q[i].L){
            L--;
            tmp-=num[a[L]]*num[a[L]];
            num[a[L]]++;
            tmp+=num[a[L]]*num[a[L]];
        }
        ans[q[i].id].a=tmp-(R-L+1);
        ans[q[i].id].b=(R-L+1)*(R-L);
    }
}
int main()
{
    LL i,g;
    while(~scanf("%I64d%I64d",&n,&m)){
        for(i=1;i<=n;i++)
        scanf("%I64d",&a[i]);
        for(i=0;i<m;i++){
            scanf("%lld%I64d",&q[i].L,&q[i].R);
            q[i].id=i;
        }
        unit=(LL)sqrt(n);
        sort(q,q+m,cmp);
        solve();
        for(i=0;i<m;i++){
            g=gcd(ans[i].a,ans[i].b);
            printf("%I64d/%I64d\n",ans[i].a/g,ans[i].b/g);
        }

    }
    return 0;
}


HDU 校第十四届大学生程序设计竞赛暨2014省赛集训队选拔赛 分块?

Problem Description

  给定n个数,记为ai(1<=i <= n),求区间内某两个数和为给定的sum的对数。

Input

  第一行输入整数T,表示共有T组.
  接下来共T组,首先输入n,sum分别表示共n个数以及给定的和,再下一行依次输入n个数ai,然后输入一个q,表示共有q个询问,接下来q行每行输入l,r,表示要求的是区间[l,r].

范围:
T<=20
n <= 20000,sum <= 20000
1 <= ai < sum
q <= 20000,1<= l < r <= n

Output

  输出q行,回答每个询问的值.

Sample Input

1
4 4
1 2 2 3
3
1 2
2 3
1 4

Sample Output

0
1
2

Source

test

分析: 上面那题求的是相等的对数,这题求得是和为sum的对数,稍微改一下就可以,当2个加数相同的时候特殊处理一下,具体看代码



#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<cmath>
#define LL __int64
#define N 200005
using namespace std;
LL unit,m,n,a[N],num[N],ans[N],sum;
struct query {
    LL L,R,id;
}q[N];
bool cmp(query a,query b){
    if(a.L/unit!=b.L/unit)
    return a.L/unit<b.L/unit;
    return a.R<b.R;
}
void solve(){
    LL tmp=0;
    memset(num,0,sizeof(num));
    LL i,L=1,R=0;
    for(i=0;i<m;i++){
        while(R<q[i].R){
            R++;
            if(a[R]*2==sum)
            tmp-=(num[a[R]]*(num[a[R]]-1))/2;
            else
            tmp-=num[a[R]]*num[sum-a[R]];
            num[a[R]]++;
            if(a[R]*2==sum)
            tmp+=(num[a[R]]*(num[a[R]]-1))/2;
            else
            tmp+=num[a[R]]*num[sum-a[R]];
        }
        while(R>q[i].R){
            if(a[R]*2==sum)
           tmp-=(num[a[R]]*(num[a[R]]-1))/2;
            else
            tmp-=num[a[R]]*num[sum-a[R]];
            num[a[R]]--;
            if(a[R]*2==sum)
           tmp+=(num[a[R]]*(num[a[R]]-1))/2;
            else
            tmp+=num[a[R]]*num[sum-a[R]];
            R--;
        }
        while(L<q[i].L){
            if(a[L]*2==sum)
            tmp-=(num[a[L]]*(num[a[L]]-1))/2;
            else
            tmp-=num[a[L]]*num[sum-a[L]];
            num[a[L]]--;
            if(a[L]*2==sum)
            tmp+=(num[a[L]]*(num[a[L]]-1))/2;
            else
            tmp+=num[a[L]]*num[sum-a[L]];
            L++;
        }
        while(L>q[i].L){
            L--;
            if(a[L]*2==sum)
           tmp-=(num[a[L]]*(num[a[L]]-1))/2;
            else
            tmp-=num[a[L]]*num[sum-a[L]];
            num[a[L]]++;
             if(a[L]*2==sum)
           tmp+=(num[a[L]]*(num[a[L]]-1))/2;
            else
            tmp+=num[a[L]]*num[sum-a[L]];
        }
        ans[q[i].id]=tmp;
    }
}
int main()
{
    LL i,t;
    scanf("%I64d",&t);
    while(t--){
        scanf("%I64d%I64d",&n,&sum);
        for(i=1;i<=n;i++){
            scanf("%I64d",&a[i]);
        }
        scanf("%I64d",&m);
        for(i=0;i<m;i++){
            scanf("%I64d%I64d",&q[i].L,&q[i].R);
            q[i].id=i;
        }
        unit=(LL)sqrt(n);
        sort(q,q+m,cmp);
        solve();
        for(i=0;i<m;i++){
            printf("%I64d\n",ans[i]);
        }
    }
    return 0;
}



阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页