文章目录
一、圆锥曲线
1. 圆锥曲线的定义
圆锥曲线,是由一平面截二次锥面得到的曲线。圆锥曲线包括椭圆、抛物线、双曲线。
圆锥曲线(二次曲线)的统一定义:到平面内一定点的距离 r r r 与到定直线的距离 d d d 之比是常数 e = r d e=\dfrac{r}{d} e=dr 的点的轨迹叫做圆锥曲线。其中当 e > 1 e>1 e>1 时为双曲线,当 e = 1 e=1 e=1 时为抛物线,当 0 < e < 1 0<e<1 0<e<1 时为椭圆。
定点叫做该圆锥曲线的焦点,定直线叫做(该焦点相应的)准线, e e e 叫做离心率。
2. 圆锥曲线中的一些概念
- 焦点: 定义中提到的定点,称为圆锥曲线的焦点。
- 准线: 定义中提到的定直线称为圆锥曲线的准线。
- 离心率:固定的常数(即圆锥曲线上一点到焦点与对应准线的距离比值)称为圆锥曲线的离心率。
- 焦准距:焦点到对应准线的距离。
- 焦半径:焦点到曲线上一点的线。
- 弦和焦点弦: 类似圆,圆锥曲线上任意两点之间的连线段称为弦;过焦点的弦称为焦点弦。
二、二次曲线通用结论
1. 二次曲线弦长公式与弦中点
解释一下这个标题:二次曲线和圆锥曲线是一个东西,弦就是二次曲线上任意两点的连线。
大概是这样的:若直线 y = k x + m ( k ≠ 0 ) y=kx+m\ (k\ne0) y=kx+m (k=0) 和二次曲线 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0 相交,设两个交点为 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A(x_1,y_1),\ B(x_2,y_2) A(x1,y1), B(x2,y2),则由根与系数的关系可以计算: ∣ A B ∣ = 1 + k 2 ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 1 + 1 k 2 ( y 1 + y 2 ) 2 − 4 y 1 y 2 |AB|=\sqrt{1+k^2}\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{1+\dfrac{1}{k^2}}\sqrt{(y_1+y_2)^2-4y_1y_2} ∣AB∣=1+k2(x1+x2)2−4x1x2=1+k21(y1+y2)2−4y1y2这个弦长公式通用于所有的二次曲线。
可能看到这里会有点懵(其实我一开始看到这个式子就已经懵了),所以接下来具体地讲一下这个式子是怎么来的。
第一步:把两点间距离公式通过直线方程进行变形操作
这样变形,用
x
1
x
2
x_1x_2
x1x2,
x
1
+
x
2
x_1+x_2
x1+x2 和斜率表达两点间的距离是为了在第二步使用根与系数的关系计算二次曲线的弦长。
∣ A B ∣ = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 |AB|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} ∣AB∣=(x2−x1)2+(y2−y1)2
= ( x 2 − x 1 ) 2 + [ ( k x 2 + b ) − ( k x 1 + b ) ] 2 =\sqrt{(x_2-x_1)^2+[(kx_2+b)-(kx_1+b)]^2} =(x2−x1)2+[(kx2+b)−(kx1+b)]2
= ( x 2 − x 1 ) 2 + k 2 ( x 2 − x 1 ) 2 =\sqrt{(x_2-x_1)^2+k^2(x_2-x_1)^2} =(x2−x1)2+k2(x2−x1)2
= 1 + k 2 ⋅ ( x 1 + x 2 ) 2 − 4 x 1 x 2 . =\sqrt{1+k^2}\cdot\sqrt{(x_1+x_2)^2-4x_1x_2}. =1+k2⋅(x1+x2)2−4x1x2.
第二步:联立方程,使用根与系数的关系计算弦长
若直线 y = k x + m y=kx+m y=kx+m 和二次曲线方程联立得 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0由根与系数的关系,得 x 1 + x 2 = − b a , x 1 x 2 = c a x_1+x_2=-\dfrac{b}{a},\ x_1x_2=\dfrac{c}{a} x1+x2=−ab, x1x2=ac
∴ 1 + k 2 ⋅ ( x 1 + x 2 ) 2 − 4 x 1 x 2 \therefore\sqrt{1+k^2}\cdot\sqrt{(x_1+x_2)^2-4x_1x_2} ∴1+k2⋅(x1+x2)2−4x1x2
= 1 + k 2 ⋅ ( − b a ) 2 − 4 × c a =\sqrt{1+k^2}\cdot\sqrt{(-\dfrac{b}{a})^2-4\times\dfrac{c}{a}} =1+k2⋅(−ab)2−4×ac
= 1 + k 2 ⋅ b 2 − 4 a c a 2 =\sqrt{1+k^2}\cdot{\sqrt{\dfrac{b^2-4ac}{a^2}}} =1+k2⋅a2b2−4ac
= 1 + k 2 ⋅ Δ ∣ a ∣ . =\sqrt{1+k^2}\cdot\dfrac{\sqrt{\Delta}}{|a|}. =1+k2⋅∣a∣Δ.
还有一个式子 1 + 1 k 2 ( y 1 + y 2 ) 2 − 4 y 1 y 2 \sqrt{1+\dfrac{1}{k^2}}\sqrt{(y_1+y_2)^2-4y_1y_2} 1+k21(y1+y2)2−4y1y2,是消去未知数 x x x 得到的,大概的推导步骤和消去 y y y 差不多。
2. 二次曲线的中点弦所在的直线方程
设 M ( x 0 , y 0 ) M(x_0,y_0) M(x0,y0) 为二次曲线 A x 2 + C y 2 + D x + E y + F = 0 Ax^2+Cy^2+Dx+Ey+F=0 Ax2+Cy2+Dx+Ey+F=0 的弦 A B AB AB 的中点, A B AB AB 的斜率为 k k k,则 k = − 2 A x 0 + D 2 C y 0 + E k=-\dfrac{2Ax_0+D}{2Cy_0+E} k=−2Cy0+E2Ax0+D直线 A B AB AB 的方程为 y − y 0 = − 2 A x 0 + D 2 C y 0 + E ( x − x 0 ) y-y_0=-\dfrac{2Ax_0+D}{2Cy_0+E}(x-x_0) y−y0=−2Cy0+E2Ax0+D(x−x0)
设二次曲线对称轴与弦 A B AB AB 交于点 M M M,倾斜角为 α \alpha α, M ( x 0 , y 0 ) M(x_0,y_0) M(x0,y0)
引入参数 t t t, ∣ t ∣ |t| ∣t∣ 表示 ∣ A M ∣ |AM| ∣AM∣ 或 ∣ B M ∣ |BM| ∣BM∣, t t t 的正负取决于 A , B A,B A,B 点与 M M M 的位置关系(上方或者下方)
则 A ( x 0 + t cos α , y 0 + t sin α ) . A(x_0+t\cos\alpha,\ y_0+t\sin\alpha). A(x0+tcosα, y0+tsinα). 代入解析式,得
A ( x 0 2 + 2 x 0 cos α t + t 2 cos 2 α ) + C ( y 0 2 + 2 y 0 sin α t + t 2 sin 2 α ) + D ( x 0 + t cos α ) + E ( y 0 + t sin α ) + F = 0 A(x_0^2+2x_0\cos\alpha t+t^2\cos^2\alpha)+C(y_0^2+2y_0\sin\alpha t+t^2\sin^2\alpha)+D(x_0+t\cos\alpha)+E(y_0+t\sin\alpha)+F=0 A(x02+2x0cosαt+t2cos2α)+C(y02+2y0sinαt+t2sin2α)+D(x0+tcosα)+E(y0+tsinα)+F=0
关于 t t t 的一元二次方程有两个互为相反数的根 ⇔ 2 A x 0 cos α + 2 C y 0 sin α + D cos α + E sin α = 0 \Leftrightarrow 2Ax_0\cos\alpha+2Cy_0\sin\alpha+D\cos\alpha+E\sin\alpha=0 ⇔2Ax0cosα+2Cy0sinα+Dcosα+Esinα=0
移项得 2 A x 0 cos α + D cos α = − C y 0 sin α − E sin α 2Ax_0\cos\alpha+D\cos\alpha=-Cy_0\sin\alpha-E\sin\alpha 2Ax0cosα+Dcosα=−Cy0sinα−Esinα
同除 cos α \cos\alpha cosα,得 k = tan α = sin α cos α = − 2 A x 0 + D 2 C y 0 + E k=\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=-\dfrac{2Ax_0+D}{2Cy_0+E} k=tanα=cosαsinα=−2Cy0+E2Ax0+D
根据点斜式即可求出方程 y − y 0 = − 2 C y 0 + E 2 A x 0 + D ( x − x 0 ) y-y_0=-\dfrac{2Cy_0+E}{2Ax_0+D}(x-x_0) y−y0=−2Ax0+D2Cy0+E(x−x0),整理得上述表达式。
3. 二次曲线的切线、切点弦
3.1 二次曲线的切线方程
已知点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0) 在二次曲线 L : A x 2 + C y 2 + D x + E y + F = 0 L:Ax^2+Cy^2+Dx+Ey+F=0 L:Ax2+Cy2+Dx+Ey+F=0 上,则过点 P P P 的曲线 L L L 的切线方程为 A x 0 x + C y 0 y + D x 0 + x 2 + y 0 + y 2 + F = 0 Ax_0x+Cy_0y+D\dfrac{x_0+x}{2}+\dfrac{y_0+y}{2}+F=0 Ax0x+Cy0y+D2x0+x+2y0+y+F=0
将 L L L 两边对 x x x 求导,得 2 A x + 2 C y y ′ + D + E y ′ = 0 2Ax+2Cyy'+D+Ey'=0 2Ax+2Cyy′+D+Ey′=0
∴ y ′ = − 2 C y + E 2 A x + D \therefore y'=-\dfrac{2Cy+E}{2Ax+D} ∴y′=−2Ax+D2Cy+E,在点 P P P 处切线斜率 k = − 2 C y 0 + E 2 A x 0 + D k=-\dfrac{2Cy_0+E}{2Ax_0+D} k=−2Ax0+D2Cy0+E
根据点斜式即可求出方程 y − y 0 = − 2 C y 0 + E 2 A x 0 + D ( x − x 0 ) y-y_0=-\dfrac{2Cy_0+E}{2Ax_0+D}(x-x_0) y−y0=−2Ax0+D2Cy0+E(x−x0),整理得上述表达式。
3.2 二次曲线外切点弦方程
已知点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0) 在二次曲线 L : A x 2 + C y 2 + D x + E y + F = 0 L:Ax^2+Cy^2+Dx+Ey+F=0 L:Ax2+Cy2+Dx+Ey+F=0 不含焦点(圆心)的区域内,则过点 P P P 可以做曲线 L L L 的两条切线,设切点分别为 Q , R Q,R Q,R,则直线 Q R QR QR 的方程为 A x 0 x + C y 0 y + D x 0 + x 2 + y 0 + y 2 + F = 0 Ax_0x+Cy_0y+D\dfrac{x_0+x}{2}+\dfrac{y_0+y}{2}+F=0 Ax0x+Cy0y+D2x0+x+2y0+y+F=0
设 Q ( x 1 , y 1 ) Q(x_1,y_1) Q(x1,y1), R ( x 2 , y 2 ) R(x_2,y_2) R(x2,y2)
由 3.1 得 P Q : A x 1 x + C y 1 y + D x 1 + x 2 + E y 1 + y 2 + F = 0 PQ:Ax_1x+Cy_1y+D\dfrac{x_1+x}{2}+E\dfrac{y_1+y}{2}+F=0 PQ:Ax1x+Cy1y+D2x1+x+E2y1+y+F=0
∴ A x 1 x 0 + C y 1 y 0 + D x 1 + x 0 2 + E y 1 + y 0 2 + F = 0 ∴Ax_1x_0+Cy_1y_0+D\dfrac{x_1+x_0}{2}+E\dfrac{y_1+y_0}{2}+F=0 ∴Ax1x0+Cy1y0+D2x1+x0+E2y1+y0+F=0
同理,有 A x 2 x 0 + C y 2 y 0 + D x 2 + x 0 2 + E y 2 + y 0 2 + F = 0. Ax_2x_0+Cy_2y_0+D\dfrac{x_2+x_0}{2}+E\dfrac{y_2+y_0}{2}+F=0. Ax2x0+Cy2y0+D2x2+x0+E2y2+y0+F=0.
∵ A x 0 x + C y 0 y + D x 0 + x 2 + y 0 + y 2 + F = 0 ∵Ax_0x+Cy_0y+D\dfrac{x_0+x}{2}+\dfrac{y_0+y}{2}+F=0 ∵Ax0x+Cy0y+D2x0+x+2y0+y+F=0十一条之间,与上述两式比较,可得该直线过 Q , R Q,R Q,R 两点
∴ Q R = A x 0 x + C y 0 y + D x 0 + x 2 + y 0 + y 2 + F = 0. ∴QR=Ax_0x+Cy_0y+D\dfrac{x_0+x}{2}+\dfrac{y_0+y}{2}+F=0. ∴QR=Ax0x+Cy0y+D2x0+x+2y0+y+F=0.
3.3 二次曲线内切点弦方程
二次曲线含焦点的部分,也叫二次曲线的内部。
已知点
P
(
x
0
,
y
0
)
P(x_0,y_0)
P(x0,y0) 在二次曲线
L
:
A
x
2
+
C
y
2
+
D
x
+
E
y
+
F
=
0
L:Ax^2+Cy^2+Dx+Ey+F=0
L:Ax2+Cy2+Dx+Ey+F=0 含焦点(或圆心)的区域内,设过点
P
P
P 的直线与曲线
L
L
L 交于
Q
,
R
Q,R
Q,R 两点,分别过
Q
,
R
Q,R
Q,R 的曲线
L
L
L 的切线交于点
G
G
G,则点
G
G
G 的轨迹是直线
A
x
0
x
+
C
y
0
y
+
D
x
0
+
x
2
+
y
0
+
y
2
+
F
=
0
Ax_0x+Cy_0y+D\dfrac{x_0+x}{2}+\dfrac{y_0+y}{2}+F=0
Ax0x+Cy0y+D2x0+x+2y0+y+F=0
证明方法与 3.2 思想类似。
此处不介绍曲线的极点、极线概念。
三、椭圆
1. 椭圆的定义
椭圆的定义有不止一种,这里介绍椭圆的第一定义和第二定义。
1.1 椭圆的第一定义
平面内与两顶点 F 1 , F 2 F_1,\ F_2 F1, F2 的距离的和等于常数 2 a ( 2 a > ∣ F 1 F 2 ∣ ) 2a\ (2a>|F_1F_2|) 2a (2a>∣F1F2∣) 的动点 P P P 的轨迹叫做椭圆。即: ∣ P F 1 ∣ + ∣ P F 2 ∣ = 2 a |PF_1|+|PF_2|=2a ∣PF1∣+∣PF2∣=2a 。
其中两定点
F
1
,
F
2
F_1,\ F_2
F1, F2 叫做椭圆的焦点,两焦点的距离
∣
F
1
F
2
∣
=
2
c
<
2
a
|F_1F_2|=2c<2a
∣F1F2∣=2c<2a 叫做椭圆的焦距。
P
P
P 为椭圆的动点。
椭圆截与两焦点连线重合的直线所得的弦为长轴,长为
2
a
2a
2a;椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为
2
b
2b
2b,
c
2
=
a
2
−
b
2
c^2=a^2-b^2
c2=a2−b2。
1.2 椭圆的第二定义
椭圆平面内到定点
F
(
c
,
0
)
F(c,0)
F(c,0) 的距离和到定直线
l
:
x
=
a
2
c
l:x=\dfrac{a^2}{c}
l:x=ca2(
F
F
F 不在
l
l
l 上)的距离之比为常数 (即离心率
e
e
e,
0
<
e
<
1
0<e<1
0<e<1)的点的轨迹是椭圆。
其中定点
F
F
F 为椭圆的焦点,定直线
l
l
l 称为椭圆的准线。该定直线的方程是
x
=
±
a
2
c
x=\pm \dfrac{a^2}{c}
x=±ca2(焦点在x轴上),或
y
=
±
a
2
c
y=\pm \dfrac{a^2}{c}
y=±ca2(焦点在y轴上)。
1.3 椭圆的焦半径
设 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0) 为椭圆 x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1 上一点,则椭圆的左焦半径 ∣ P F 1 ∣ = a + e x 0 |PF_1|=a+ex_0 ∣PF1∣=a+ex0,右焦半径 ∣ P F 2 ∣ = a − e x 0 |PF_2|=a-ex_0 ∣PF2∣=a−ex0。
2. 椭圆的方程
在此只介绍椭圆的标准方程。所谓“标准”,就是指椭圆的中心在原点,对称轴为坐标轴。
椭圆的标准方程有两种,取决于焦点所在的坐标轴: x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ,焦点在 x 轴上 ) \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\ (a>b>0,焦点在x轴上) a2x2+b2y2=1 (a>b>0,焦点在x轴上) x 2 b 2 + y 2 a 2 = 1 ( a > b > 0 ,焦点在 y 轴上 ) \dfrac{x^2}{b^2}+\dfrac{y^2}{a^2}=1\ (a>b>0,焦点在y轴上) b2x2+a2y2=1 (a>b>0,焦点在y轴上)
2.1 椭圆的离心率
椭圆的离心率 e = c a = 1 − ( b a ) 2 e=\dfrac{c}{a}=\sqrt{1-\Big(\dfrac{b}{a}\Big)^2} e=ac=1−(ab)2,可以描述椭圆的扁平程度。离心率越接近于0,椭圆就越圆,等于 0 时,椭圆的两个焦点重合,变成一个圆。离心率越接近于1,椭圆就越扁,越接近于一条直线。
离心率是圆锥曲线中的一个很重要的概念,必须牢牢记住。
2.2 椭圆的准线
在此,不得不提椭圆的准线 x = ± a 2 c x=\pm \dfrac{a^2}{c} x=±ca2。在椭圆的第二定义中,我们大概知道了准线,它和离心率有着很密切的关系。下面,我们来证明椭圆上的任意一点到准线与到焦点的距离之比都为 c a \dfrac{c}{a} ac。
3. 椭圆的焦点弦长
椭圆
x
2
a
2
+
y
2
b
2
=
1
\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1
a2x2+b2y2=1 的倾斜角为
α
\alpha
α 的焦点弦长
∣
A
B
∣
=
2
a
b
2
b
2
+
c
2
sin
2
α
=
2
a
b
2
a
2
−
c
2
cos
2
α
|AB|=\dfrac{2ab^2}{b^2+c^2\sin^2\alpha}=\dfrac{2ab^2}{a^2-c^2\cos^2\alpha}
∣AB∣=b2+c2sin2α2ab2=a2−c2cos2α2ab2
知道了椭圆的一个重要性质后,就可以证明椭圆的焦点弦长。别看这个式子一大坨,只要紧扣椭圆第二定义,用
a
,
b
,
c
a,b,c
a,b,c 表示出椭圆弦长就可以了。
4. 椭圆的光学性质
从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线会通过另一个焦点。
通过椭圆切线方程可以证明。
四、椭圆二级结论
椭圆的二级结论非常多,在这里介绍几个比较常用的结论,如果能熟练掌握,对之后的解题有很大的帮助。
前方高能!!!
1. 过椭圆上一点的切线方程
若点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 在椭圆 x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1上,则过 P 0 P_0 P0 的椭圆的切线方程是 x 0 x a 2 + y 0 y b 2 = 1. \dfrac{x_0x}{a^2}+\dfrac{y_0y}{b^2}=1. a2x0x+b2y0y=1.
过椭圆上一点的切线方程 非常非常重要,关于椭圆的题,很多时候都需要这个切线方程,还不赶快记下来?
证法一:求导法
函数
y
=
f
(
x
)
y=f(x)
y=f(x) 在
x
0
x_0
x0 点的导数
f
′
(
x
0
)
f'(x_0)
f′(x0) 的几何意义,表示函数曲线在点
P
0
(
x
0
,
f
(
x
0
)
)
P_0(x_0,f(x_0))
P0(x0,f(x0)) 处的切线的斜率。
那么椭圆方程关于
x
x
x 求导,就可以得到椭圆在点
(
x
,
f
(
x
)
)
(x,f(x))
(x,f(x)) 处的切线斜率。
证明: ∵ P 0 ( x 0 , y 0 ) \because P_0(x_0,y_0) ∵P0(x0,y0) 在椭圆 x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1
∴ x 0 2 a 2 + y 0 2 b 2 = 1 \therefore \dfrac{x_0^2}{a^2}+\dfrac{y_0^2}{b^2}=1 ∴a2x02+b2y02=1
对 x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1 求导得 2 x a 2 + 2 y y ′ b 2 = 0 \dfrac{2x}{a^2}+\dfrac{2yy'}{b^2}=0 a22x+b22yy′=0
∴ y ′ = − b 2 x 0 a 2 y 0 \therefore y'=-\dfrac{b^2x_0}{a^2y_0} ∴y′=−a2y0b2x0
∴ \therefore ∴ 切线方程为 y − y 0 = − b 2 x 0 a 2 y 0 ( x − x 0 ) y-y_0=-\dfrac{b^2x_0}{a^2y_0}(x-x_0) y−y0=−a2y0b2x0(x−x0)
即 x 0 x a 2 + y 0 y b 2 = 1. \dfrac{x_0x}{a^2}+\dfrac{y_0y}{b^2}=1. a2x0x+b2y0y=1.
上述求导法属于隐式函数求导,过于深奥,所以也可以把椭圆
x
2
a
2
+
y
2
b
2
=
1
\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1
a2x2+b2y2=1 分成
y
>
0
y>0
y>0 和
y
<
0
y<0
y<0 两部分求导。
证法二:判别式法
设出切线方程,与椭圆的方程联立,令判别式
Δ
=
0
\Delta=0
Δ=0 即可。
思路简单,但是计算量比较大,这里也不再赘述。
2. 切点弦方程
若点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 在椭圆 x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1 外,则过 P 0 P_0 P0 作椭圆的两条切线,切点为 P 1 , P 2 P_1,P_2 P1,P2,则切点弦 P 1 P 2 P_1P_2 P1P2 的直线方程是 x 0 x a 2 + y 0 y b 2 = 1. \dfrac{x_0x}{a^2}+\dfrac{y_0y}{b^2}=1. a2x0x+b2y0y=1.
证明: 设 P 1 ( x 1 , y 1 ) , P 2 ( x 2 , y 2 ) P_1(x_1,y_1),\ P_2(x_2,y_2) P1(x1,y1), P2(x2,y2),有 x 0 x 1 a 2 + y 0 y 1 b 2 = 1 \dfrac{x_0x_1}{a^2}+\dfrac{y_0y_1}{b^2}=1 a2x0x1+b2y0y1=1, x 0 x 2 a 2 + y 0 y 2 b 2 = 1 \dfrac{x_0x_2}{a^2}+\dfrac{y_0y_2}{b^2}=1 a2x0x2+b2y0y2=1
∵ \because ∵ 点 P 1 , P 2 P_1,P_2 P1,P2 在直线 P 1 P 2 P_1P_2 P1P2 上且都满足方程 x 0 x a 2 + y 0 y b 2 = 1 \dfrac{x_0x}{a^2}+\dfrac{y_0y}{b^2}=1 a2x0x+b2y0y=1
∴ \therefore ∴ 直线 P 1 P 2 P_1P_2 P1P2 的方程为 x 0 x a 2 + y 0 y b 2 = 1 \dfrac{x_0x}{a^2}+\dfrac{y_0y}{b^2}=1 a2x0x+b2y0y=1
*这里的 1, 2 两个结论就是二次曲线通用结论中的特殊情况。
3. 中点弦方程
3.1 中点弦和中点与原点连线的斜率之积
A B AB AB 是椭圆 x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1 的不平行于对称轴的弦, M M M为 A B AB AB 的中点,则 k O M ⋅ k A B = − b 2 a 2 = e 2 − 1. k_{OM}\cdot k_{AB}=-\dfrac{b^2}{a^2}=e^2-1. kOM⋅kAB=−a2b2=e2−1.
证明: 设 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , M ( x 0 , y 0 ) A(x_1,y_1),\ B(x_2,y_2),\ M(x_0,y_0) A(x1,y1), B(x2,y2), M(x0,y0),则有 x 1 2 a 1 2 + y 2 b 2 = 1 \dfrac{x_1^2}{a_1^2}+\dfrac{y^2}{b^2}=1 a12x12+b2y2=1, x 2 2 a 2 + y 2 2 b 2 = 1 \dfrac{x_2^2}{a^2}+\dfrac{y_2^2}{b^2}=1 a2x22+b2y22=1
作差得 x 1 2 − x 2 2 a 2 + y 1 2 − y 2 2 b 2 = 0 \dfrac{x_1^2-x_2^2}{a^2}+\dfrac{y_1^2-y_2^2}{b^2}=0 a2x12−x22+b2y12−y22=0
∴ ( x 1 − x 2 ) ( x 1 + x 2 ) a 2 + ( y 1 − y 2 ) ( y 1 + y 2 ) b 2 = 0 \therefore \dfrac{(x_1-x_2)(x_1+x_2)}{a^2}+\dfrac{(y_1-y_2)(y_1+y_2)}{b^2}=0 ∴a2(x1−x2)(x1+x2)+b2(y1−y2)(y1+y2)=0
∴ k A B = y 1 − y 2 x 1 − x 2 = − b 2 ( x 1 + x 2 ) a 2 ( y 1 + y 2 ) = − b 2 x 0 a 2 y 0 = − b 2 a 2 ⋅ k O M \therefore k_{AB}=\dfrac{y_1-y_2}{x_1-x_2}=-\dfrac{b^2(x_1+x_2)}{a^2(y_1+y_2)}=-\dfrac{b^2x_0}{a^2y_0}=-\dfrac{b^2}{a^2\cdot k_{OM}} ∴kAB=x1−x2y1−y2=−a2(y1+y2)b2(x1+x2)=−a2y0b2x0=−a2⋅kOMb2
∴ k O M ⋅ k A B = − b 2 a 2 . \therefore k_{OM}\cdot k_{AB}=-\dfrac{b^2}{a^2}. ∴kOM⋅kAB=−a2b2.
*这个结论很重要,一定要记住!
3.2 中点弦方程
若点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 在椭圆 x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1 内,则被 P 0 P_0 P0 所平分的中点弦的方程是 x 0 x a 2 + y 0 y b 2 = x 0 2 a 2 + y 0 2 b 2 . \dfrac{x_0x}{a^2}+\dfrac{y_0y}{b^2}=\dfrac{x_0^2}{a^2}+\dfrac{y_0^2}{b^2}. a2x0x+b2y0y=a2x02+b2y02.
证明: 由 3.1,可得 y − y 0 = − b 2 x 0 a 2 y 0 ( x − x 0 ) y-y_0=-\dfrac{b^2x_0}{a^2y_0}(x-x_0) y−y0=−a2y0b2x0(x−x0)
∴ a 2 y 0 y − a 2 y 0 2 + b 2 x 0 x − b 2 x 0 2 = 0 \therefore a^2y_0y-a^2y_0^2+b^2x_0x-b^2x_0^2=0 ∴a2y0y−a2y02+b2x0x−b2x02=0
∴ b 2 x 0 x + a 2 y 0 y = b 2 x 0 2 + a 2 y 0 2 \therefore b^2x_0x+a^2y_0y=b^2x_0^2+a^2y_0^2 ∴b2x0x+a2y0y=b2x02+a2y02
∴ \therefore ∴ 中点弦的方程为 x 0 x a 2 + y 0 y b 2 = x 0 2 a 2 + y 0 2 b 2 . \dfrac{x_0x}{a^2}+\dfrac{y_0y}{b^2}=\dfrac{x_0^2}{a^2}+\dfrac{y_0^2}{b^2}. a2x0x+b2y0y=a2x02+b2y02.
4. 弦中点轨迹方程
若点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 在椭圆 x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1 内,则过 P 0 P_0 P0 的弦中点的轨迹方程是 x 2 a 2 + y 2 b 2 = x 0 x a 2 + y 0 y b 2 . \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=\dfrac{x_0x}{a^2}+\dfrac{y_0y}{b^2}. a2x2+b2y2=a2x0x+b2y0y.
证明: 由 3.1,可得 y − y 0 x − x 0 ⋅ y x = − b 2 a 2 \dfrac{y-y_0}{x-x_0}\cdot\dfrac{y}{x}=-\dfrac{b^2}{a^2} x−x0y−y0⋅xy=−a2b2
∴ a 2 y 2 − a 2 y 0 y + b 2 x 2 − b 2 x 0 x = 0 \therefore a^2y^2-a^2y_0y+b^2x^2-b^2x_0x=0 ∴a2y2−a2y0y+b2x2−b2x0x=0
∴ b 2 x 2 + a 2 y 2 = b 2 x 0 x + a 2 y 0 y \therefore b^2x^2+a^2y^2=b^2x_0x+a^2y_0y ∴b2x2+a2y2=b2x0x+a2y0y
∴ x 2 a 2 + y 2 b 2 = x 0 x a 2 + y 0 y b 2 . \therefore\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=\dfrac{x_0x}{a^2}+\dfrac{y_0y}{b^2}. ∴a2x2+b2y2=a2x0x+b2y0y.
提醒一下:弦中点的轨迹是椭圆。
5. 椭圆与直线有公共点的充要条件
5.1 中心在原点的椭圆与直线有公共点的充要条件
椭圆 x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1 与直线 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0 有公共点的充要条件是 A 2 a 2 + B 2 b 2 ≥ C 2 . A^2a^2+B^2b^2\ge C^2. A2a2+B2b2≥C2.
别怕,直接暴力计算
证明: 联立方程,得 { b 2 x 2 + a 2 y 2 = a 2 b 2 A x + B y + C = 0 \begin{cases} b^2x^2+a^2y^2=a^2b^2 \\ Ax+By+C=0 \\ \end{cases} {b2x2+a2y2=a2b2Ax+By+C=0整理得 ( A 2 a 2 + B 2 b 2 ) x 2 + 2 a 2 A C x + a 2 ( C 2 − B 2 b 2 ) = 0 (A^2a^2+B^2b^2)x^2+2a^2ACx+a^2(C^2-B^2b^2)=0 (A2a2+B2b2)x2+2a2ACx+a2(C2−B2b2)=0
Δ = 4 a 4 A 2 C 2 − 4 a 2 ( C 2 − B 2 b 2 ) ( A 2 a 2 + B 2 b 2 ) ≥ 0 \Delta=4a^4A^2C^2-4a^2(C^2-B^2b^2)(A^2a^2+B^2b^2)\ge0 Δ=4a4A2C2−4a2(C2−B2b2)(A2a2+B2b2)≥0
∴ A 2 a 2 + B 2 b 2 ≥ C 2 \therefore A^2a^2+B^2b^2\ge C^2 ∴A2a2+B2b2≥C2
5.2 一般椭圆与直线有公共点的充要条件
椭圆 ( x − x 0 ) 2 a 2 + ( y − y 0 ) 2 b 2 = 1 \dfrac{(x-x_0)^2}{a^2}+\dfrac{(y-y_0)^2}{b^2}=1 a2(x−x0)2+b2(y−y0)2=1 与直线 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0 有公共点的充要条件是 A 2 a 2 + B 2 b 2 ≥ ( A x 0 + B y 0 + C ) 2 . A^2a^2+B^2b^2\ge(Ax_0+By_0+C)^2. A2a2+B2b2≥(Ax0+By0+C)2.
和 6.1 证明类似,这里不再赘述。
6. 椭圆上两点与原点连线相互垂直时的性质
已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\ (a>b>0) a2x2+b2y2=1 (a>b>0), O O O 为坐标原点, A A A、 B B B 为椭圆上两动点,且 O A ⊥ O B OA\perp OB OA⊥OB,则 1 ∣ O A ∣ 2 + 1 ∣ O B ∣ 2 = 1 a 2 + 1 b 2 . \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}=\dfrac1{a^2}+\dfrac1{b^2}. ∣OA∣21+∣OB∣21=a21+b21.
证明: 设 ∣ O A ∣ = r 1 , ∣ O B ∣ = r 2 |OA|=r_1,|OB|=r_2 ∣OA∣=r1,∣OB∣=r2, O B OB OB 与 x x x 轴的夹角为 α \alpha α,则 A ( r 1 cos ( π 2 + α ) , r 1 sin ( π 2 + α ) ) A\Big(r_1\cos\Big(\dfrac{\pi}{2}+\alpha\Big),\ r_1\sin\Big(\dfrac{\pi}{2}+\alpha\Big)\Big) A(r1cos(2π+α), r1sin(2π+α)), B ( r 2 cos α , r 2 sin α ) B(r_2\cos\alpha,\ r_2\sin\alpha) B(r2cosα, r2sinα)
由诱导公式,可得 A ( − r 1 sin α , r 1 cos α ) A(-r_1\sin\alpha,\ r_1\cos\alpha) A(−r1sinα, r1cosα)
将点 B B B 坐标代入椭圆方程, r 2 2 cos 2 α a 2 + r 2 2 sin 2 α b 2 = 1 \dfrac{r_2^2\cos^2\alpha}{a^2}+\dfrac{r_2^2\sin^2\alpha}{b^2}=1 a2r22cos2α+b2r22sin2α=1
∴ cos 2 α a 2 + sin 2 α b 2 = 1 r 2 2 ∴\dfrac{\cos^2\alpha}{a^2}+\dfrac{\sin^2\alpha}{b^2}=\dfrac1{r_2^2} ∴a2cos2α+b2sin2α=r221
同理可得 sin 2 α a 2 + cos 2 α b 2 = 1 r 1 2 \dfrac{\sin^2\alpha}{a^2}+\dfrac{\cos^2\alpha}{b^2}=\dfrac1{r_1^2} a2sin2α+b2cos2α=r121
两式相加,得 1 a 2 + 1 b 2 = 1 r 1 2 + 1 r 2 2 \dfrac1{a^2}+\dfrac1{b^2}=\dfrac1{r_1^2}+\dfrac1{r_2^2} a21+b21=r121+r221 即 1 ∣ O A ∣ 2 + 1 ∣ O B ∣ 2 = 1 a 2 + 1 b 2 . \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}=\dfrac1{a^2}+\dfrac1{b^2}. ∣OA∣21+∣OB∣21=a21+b21.
7. 过椭圆上两点的相互垂直的切线轨迹
过椭圆 x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1 上不同两点 A A A 和 B B B 的切线互相垂直,则两切线焦点 M M M 的轨迹方程为 x 2 + y 2 = a 2 + b 2 . x^2+y^2=a^2+b^2. x2+y2=a2+b2.
这里介绍一下椭圆的参数方程。利用
sin
2
θ
+
cos
2
θ
=
1
\sin^2\theta+\cos^2\theta=1
sin2θ+cos2θ=1,我们可以设
x
=
a
cos
θ
x=a\cos\theta
x=acosθ,
y
=
b
sin
θ
y=b\sin\theta
y=bsinθ,这里
θ
\theta
θ 指的是椭圆上的动点与坐标原点的连线与
x
x
x 轴的夹角度数。
这里再略提一下两条直线
l
1
:
A
1
x
+
B
1
y
+
C
1
=
0
l_1:A_1x+B_1y+C_1=0
l1:A1x+B1y+C1=0 和
l
2
:
A
2
x
+
B
2
y
+
C
2
=
0
l_2:A_2x+B_2y+C_2=0
l2:A2x+B2y+C2=0 垂直的充要条件是
A
1
A
2
+
B
1
B
2
=
0
A_1A_2+B_1B_2=0
A1A2+B1B2=0,就是法向量相互垂直乘积为零。
证明: 设 A ( a cos α , b sin α ) A(a\cos\alpha,\ b\sin\alpha) A(acosα, bsinα), B ( a cos β , b sin β ) . B(a\cos\beta,\ b\sin\beta). B(acosβ, bsinβ).
代入椭圆的切线方程,得 cos α a x + sin α b y = 1 \dfrac{\cos\alpha}{a}x+\dfrac{\sin\alpha}{b}y=1 acosαx+bsinαy=1, cos β a x + sin β b y = 1. \dfrac{\cos\beta}{a}x+\dfrac{\sin\beta}{b}y=1. acosβx+bsinβy=1.
∴ x = a sin β − sin α sin ( β − α ) ∴x=a\dfrac{\sin\beta-\sin\alpha}{\sin(\beta-\alpha)} ∴x=asin(β−α)sinβ−sinα, y = b cos α − cos β sin ( β − α ) y=b\dfrac{\cos\alpha-\cos\beta}{\sin(\beta-\alpha)} y=bsin(β−α)cosα−cosβ
又因为两条切线互相垂直,所以有 cos α cos β a 2 + sin α sin β b 2 = 0 \dfrac{\cos\alpha\cos\beta}{a^2}+\dfrac{\sin\alpha\sin\beta}{b^2}=0 a2cosαcosβ+b2sinαsinβ=0
∴ a 2 sin α sin β + b 2 cos α cos β = 0 ∴a^2\sin\alpha\sin\beta+b^2\cos\alpha\cos\beta=0 ∴a2sinαsinβ+b2cosαcosβ=0
x 2 + y 2 − a 2 − b 2 = a 2 [ sin 2 β + sin 2 α − sin 2 ( β − α ) ] + b 2 [ cos 2 α + cos 2 β − sin 2 ( β − α ) ] − 2 ( a 2 sin α sin β + b 2 cos α cos β ) sin 2 ( β − α ) = cos ( α − β ) sin 2 ( α − β ) [ a 2 sin α sin β + b 2 cos α cos β ] = 0. \quad x^2+y^2-a^2-b^2\\=\dfrac{a^2\Big[\sin^2\beta+\sin^2\alpha-\sin^2(\beta-\alpha)\Big]+b^2\Big[\cos^2\alpha+\cos^2\beta-\sin^2(\beta-\alpha)\Big]-2(a^2\sin\alpha\sin\beta+b^2\cos\alpha\cos\beta)}{\sin^2(\beta-\alpha)}\\=\dfrac{\cos(\alpha-\beta)}{\sin^2(\alpha-\beta)}\Big[a^2\sin\alpha\sin\beta+b^2\cos\alpha\cos\beta\Big]=0. x2+y2−a2−b2=sin2(β−α)a2[sin2β+sin2α−sin2(β−α)]+b2[cos2α+cos2β−sin2(β−α)]−2(a2sinαsinβ+b2cosαcosβ)=sin2(α−β)cos(α−β)[a2sinαsinβ+b2cosαcosβ]=0.sin 2 β + sin 2 α − sin 2 ( β − α ) = sin 2 β + sin β sin ( 2 α − β ) = sin β [ sin β + sin ( 2 α − β ) ] = 2 sin β sin α cos ( β − α ) \quad\sin^2\beta+\sin^2\alpha-\sin^2(\beta-\alpha)\\=\sin^2\beta+\sin\beta\sin(2\alpha-\beta)\\=\sin\beta\Big[\sin\beta+\sin(2\alpha-\beta)\Big]\\=2\sin\beta\sin\alpha\cos(\beta-\alpha) sin2β+sin2α−sin2(β−α)=sin2β+sinβsin(2α−β)=sinβ[sinβ+sin(2α−β)]=2sinβsinαcos(β−α)
cos 2 α + cos 2 β − sin 2 ( β − α ) = cos 2 α + 1 + cos 2 β 2 − 1 − cos ( 2 β − 2 α ) 2 = cos 2 α + cos 2 β + cos ( 2 β − 2 α ) 2 = cos 2 α + cos ( 2 β − α ) cos α = cos α ( cos α + cos ( 2 β − α ) = 2 cos α cos ( α − β ) \quad\cos^2\alpha+\cos^2\beta-\sin^2(\beta-\alpha)\\=\cos^2\alpha+\dfrac{1+\cos2\beta}{2}-\dfrac{1-\cos(2\beta-2\alpha)}{2}\\=\cos^2\alpha+\dfrac{\cos2\beta+\cos(2\beta-2\alpha)}{2}\\=\cos^2\alpha+\cos(2\beta-\alpha)\cos\alpha\\=\cos\alpha(\cos\alpha+\cos(2\beta-\alpha)\\=2\cos\alpha\cos(\alpha-\beta) cos2α+cos2β−sin2(β−α)=cos2α+21+cos2β−21−cos(2β−2α)=cos2α+2cos2β+cos(2β−2α)=cos2α+cos(2β−α)cosα=cosα(cosα+cos(2β−α)=2cosαcos(α−β)
可以看出,三角函数方法对基本功的要求还是很高的。代数方法也可以证明这个结论,但是计算量偏大,在这里也不作过多探讨。
后话
写到这里,我想问个问题:圆是椭圆吗?
大家快来投票吧 😃
下篇分享双曲线和抛物线及有关结论。