关于softmax损失函数的推导

转载自:http://blog.csdn.net/xizero00

关于softmax损失函数的推导

某人问我softamx损失函数的推导,索性就写一下. 
定义softmax损失函数的输入为XN×CXN×C和YN×CYN×C, 
其中N代表输入的数据的个数,C代表类别的个数.X指的是神经网络的输出,Y代表的是0-1矩阵,即如果第i个样本的类别为j那么yij=1yij=1, 那么第i行的其余列的值就都为0. 这里我们用1{j=y(i)}1{j=y(i)}来表示. 
这里的softmax分类器是接在了神经网络的后面的.我们把softmax分类器看成神经网络的最后一层(请注意我的前提条件!).那么在对神经网络进行优化的时候就需要求出其关于输入X的偏导.

softmax classifier的损失函数如下: 
loss(X,Y)=−1N∑i∑j1{j=y(i)}log(pi,j)loss(X,Y)=−1N∑i∑j1{j=y(i)}log(pi,j) 
其中pi,j=exp(xi,j)∑jexp(xi,j)pi,j=exp(xi,j)∑jexp(xi,j),其含义为第i个输入的类别为j的概率为pi,jpi,j 
我们关于xi,jxi,j求偏导 
首先进行拆分 
∑i∑j1{j=y(i)}log(pi,j)=∑i[1{j=y(i)}log(pi,j)+∑c≠j1{c=y(i)}log(pi,c)]∑i∑j1{j=y(i)}log(pi,j)=∑i[1{j=y(i)}log(pi,j)+∑c≠j1{c=y(i)}log(pi,c)] 
那么损失函数为 
loss(X,Y)=−1N[∑i[1{j=y(i)}log(pi,j)+∑c≠j1{c=y(i)}log(pi,c)]]loss(X,Y)=−1N[∑i[1{j=y(i)}log(pi,j)+∑c≠j1{c=y(i)}log(pi,c)]] 
接下来进行求导 
∂loss∂xi,j=−1N[1{j=y(i)}1pi,j∂pi,j∂xi,j+∑c≠j1{c=y(i)}1pi,c∂pi,c∂xi,j]∂loss∂xi,j=−1N[1{j=y(i)}1pi,j∂pi,j∂xi,j+∑c≠j1{c=y(i)}1pi,c∂pi,c∂xi,j]

接下来我们求∂pi,j∂xi,j∂pi,j∂xi,j 
pi,j=exp(xi,j)∑jexp(xi,j)pi,j=exp(xi,j)∑jexp(xi,j) 
∂pi,j∂xi,j=exp(xi,j)∑jexp(xi,j))−exp(xi,j)exp(xi,j))[∑jexp(xi,j)]2=exp(xi,j)∑jexp(xi,j)∑jexp(xi,j)−exp(xi,j)∑jexp(xi,j)=pi,j(1−pi,j)∂pi,j∂xi,j=exp(xi,j)∑jexp(xi,j))−exp(xi,j)exp(xi,j))[∑jexp(xi,j)]2=exp(xi,j)∑jexp(xi,j)∑jexp(xi,j)−exp(xi,j)∑jexp(xi,j)=pi,j(1−pi,j) 
接下来我们求∂pi,c∂xi,j∂pi,c∂xi,j 
pi,c=exp(xi,c)∑jexp(xi,j)pi,c=exp(xi,c)∑jexp(xi,j), 
∂pi,c∂xi,j=−exp(xi,c)exp(xi,j)[∑jexp(xi,j)]2=exp(xi,c)∑jexp(xi,j)−exp(xi,j)∑jexp(xi,j)=pi,c(−pi,j)∂pi,c∂xi,j=−exp(xi,c)exp(xi,j)[∑jexp(xi,j)]2=exp(xi,c)∑jexp(xi,j)−exp(xi,j)∑jexp(xi,j)=pi,c(−pi,j)

那么就可以将上述结果带入可得 
∂loss∂xi,j=−1N[1{j=y(i)}1pi,j∂pi,j∂xi,j+∑c≠j1{c=y(i)}1pi,c∂pi,c∂xi,j]∂loss∂xi,j=−1N[1{j=y(i)}1pi,j∂pi,j∂xi,j+∑c≠j1{c=y(i)}1pi,c∂pi,c∂xi,j] 
=−1N[1{j=y(i)}1pi,jpi,j(1−pi,j)+∑c≠j1{c=y(i)}1pi,cpi,c(−pi,j)]=−1N[1{j=y(i)}1pi,jpi,j(1−pi,j)+∑c≠j1{c=y(i)}1pi,cpi,c(−pi,j)] 
=−1N[1{j=y(i)}(1−pi,j)+∑c≠j1{c=y(i)}(−pi,j)]=−1N[1{j=y(i)}(1−pi,j)+∑c≠j1{c=y(i)}(−pi,j)] 
=−1N[1{j=y(i)}−1{j=y(i)}pi,j−∑c≠j1{c=y(i)}pi,j]=−1N[1{j=y(i)}−1{j=y(i)}pi,j−∑c≠j1{c=y(i)}pi,j] 
=−1N[1{j=y(i)}−∑j1{j=y(i)}pi,j]=−1N[1{j=y(i)}−∑j1{j=y(i)}pi,j] 
=−1N[1{j=y(i)}−pi,j]=−1N[1{j=y(i)}−pi,j] 
=1N[pi,j−1{j=y(i)}]=1N[pi,j−1{j=y(i)}] 
即为所求,代码如下: 
softmax损失函数及其关于输入的偏导 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
softmax函数的推导如下所示: 假设有一个具有n个类别的分类任务,softmax函数可以将n个输入值转化为n个概率值,表示每个类别被选择的概率。 首先,我们定义softmax函数的输入为向量z = [z1, z2, ..., zn],其中zi表示第i个类别的输入值。 softmax函数的定义如下: ```python softmax(z) = [e^z1 / (e^z1 + e^z2 + ... + e^zn), e^z2 / (e^z1 + e^z2 + ... + e^zn), ..., e^zn / (e^z1 + e^z2 + ... + e^zn)] ``` 为了推导softmax函数的导数,我们首先计算softmax函数的输出值。 softmax函数的输出值为: ```python softmax(z) = [p1, p2, ..., pn] ``` 其中pi表示第i个类别被选择的概率。 接下来,我们需要计算softmax函数对输入向量z的导数。 根据链式法则,softmax函数对输入向量z的导数可以表示为: ```python dsoftmax(z) / dz = [dp1 / dz1, dp2 / dz2, ..., dpn / dzn] ``` 我们可以通过对softmax函数的输出值pi求导来计算dsoftmax(z) / dz。 根据softmax函数的定义,我们可以将pi表示为: ```python pi = e^zi / (e^z1 + e^z2 + ... + e^zn) ``` 对pi求导,可以得到: ```python dpi / dzi = (e^zi * (e^z1 + e^z2 + ... + e^zn) - e^zi * e^zi) / (e^z1 + e^z2 + ... + e^zn)^2 = e^zi / (e^z1 + e^z2 + ... + e^zn) - (e^zi / (e^z1 + e^z2 + ... + e^zn))^2 = pi - pi^2 = pi * (1 - pi) ``` 因此,softmax函数对输入向量z的导数可以表示为: ```python dsoftmax(z) / dz = [p1 * (1 - p1), p2 * (1 - p2), ..., pn * (1 - pn)] ``` 这样,我们就推导出了softmax函数的导数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值