2020年的Java程序员面试三件套:算法+多线程+微服务,对于那些想面试高级 Java 岗位的同学来说,算法+多线程+微服务是绕不过的坎!剩下针对实际工作的题目就属于真正的本事了,热门技术的细节和难点成为了面试时主要考察的内容。
这里总结了算法+多线程+微服务相关面试题,有的很基础,有的很细节,大家可以评估一下自己掌握的情况。
这里把重要的知识点都写出来了,不管是核心知识点也好还是面试题也好,让大家对知识框架有个基本轮廓
需要的朋友可以,点击这里领取!!!,暗号是:CSDN
算法大全
一. 最小生成树算法
连通图:在无向图G中,若从顶点i到顶点j有路径,则称顶点i和顶点j是连通的。若图G中任意两个顶点都连通,则称G为连通图。
生成树:一个连通图的生成树是该连通图的一个极小连通子图,它含有全部顶点,但只有构成一个数的(n-1)条边。
最小生成树:对于一个带权连通无向图G中的不同生成树,各树的边上的 权值之和最小。构造最小生成树的准则有三条:
必须只使用该图中的边来构造最小生成树。
必须使用且仅使用(n-1)条边来连接图中的n个顶点。
不能使用产生回路的边。
- Prim算法
假设G=(V,E)是一个具有n个顶点的带权连通无向图,T(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,则由G构造从起始顶点v出发的最小生成树T的步骤为:
初始化U={v},以v到其他顶点的所有边为候选边(U中所有点到其他顶点的边)。
重复以下步骤(n-1)次,使得其他(n-1)个顶点被加入到U中。
从候选边中挑选权值最小的边加入TE,设该边在V-U(这里是集合减)中的顶点是k,将k加入U中。
考察当前V-U中的所有顶点j,修改候选边,若边(k,j)的权值小于原来和顶点j关联的候选边,则用(k,j)取代后者作为候选边。
- Kruskal算法
假设G=(V,E)是一个具有n个顶点的带权连通无向图,T(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,则由G构造从起始顶点v出发的最小生成树T的步骤为:
置U的初始值等于V(即包含G中的全部顶点),TE的初始值为空
将图G中的边按权值从小到大的顺序依次选取,若选取的边未使生成树T形成回路,则加入TE,否则放弃,知道TE中包含(n-1)条边为止。
二. 最短路径算法
- Dijkstra —— 贪心算法
从一个顶点到其余顶点的最短路径
设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第1组为已求出最短路径的顶点(用S表示,初始时S只有一个源点,以后每求得一条最短路径v,…k,就将k加到集合S中,直到全部顶点都加入S)。第2组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序把第2组的顶点加入S中。
步骤:
初始时,S只包含源点,即S={v},顶点v到自己的距离为0。U包含除v外的其他顶点,v到U中顶点i的距离为边上的权。
从U中选取一个顶点u,顶点v到u的距离最小,然后把顶点u加入S中。
以顶点u为新考虑的中间点,修改v到U中各个点的距离。
重复以上步骤知道S包含所有顶点。
2. Floyd —— 动态规划
Floyd 算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权(但不可存在负权回路)的最短路径问题。该算法的时间复杂度为 O ( N 3 ) O(N^{3}) O(N3),空间复杂度为 O ( N 2 ) O(N^{2}) O(N2)
设 D i , j , k D_{i,j,k} Di,j,k为从 i i i到 j j j的只以 ( 1.. k ) (1..k) (1..k)集合中的节点为中间节点的最短路径的长度。
D i , j , k = { D i , j , k − 1 最 短 路 径 不 经 过 k D i , k , k − 1 + D k , j , k − 1 最 短 路 径 经 过 k D{i,j,k}=\begin{cases} D{i,j,k-1} &最短路径不经过k D{i,k,k-1}+D{k,j,k-1} &最短路径经过k \end{cases} Di,j,k={ Di,j,k