http://acm.hdu.edu.cn/showproblem.php?pid=1253
胜利大逃亡
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 16298 Accepted Submission(s): 6447
Problem Description
Ignatius被魔王抓走了,有一天魔王出差去了,这可是Ignatius逃亡的好机会.
魔王住在一个城堡里,城堡是一个A*B*C的立方体,可以被表示成A个B*C的矩阵,刚开始Ignatius被关在(0,0,0)的位置,离开城堡的门在(A-1,B-1,C-1)的位置,现在知道魔王将在T分钟后回到城堡,Ignatius每分钟能从一个坐标走到相邻的六个坐标中的其中一个.现在给你城堡的地图,请你计算出Ignatius能否在魔王回来前离开城堡(只要走到出口就算离开城堡,如果走到出口的时候魔王刚好回来也算逃亡成功),如果可以请输出需要多少分钟才能离开,如果不能则输出-1.
魔王住在一个城堡里,城堡是一个A*B*C的立方体,可以被表示成A个B*C的矩阵,刚开始Ignatius被关在(0,0,0)的位置,离开城堡的门在(A-1,B-1,C-1)的位置,现在知道魔王将在T分钟后回到城堡,Ignatius每分钟能从一个坐标走到相邻的六个坐标中的其中一个.现在给你城堡的地图,请你计算出Ignatius能否在魔王回来前离开城堡(只要走到出口就算离开城堡,如果走到出口的时候魔王刚好回来也算逃亡成功),如果可以请输出需要多少分钟才能离开,如果不能则输出-1.
Input
输入数据的第一行是一个正整数K,表明测试数据的数量.每组测试数据的第一行是四个正整数A,B,C和T(1<=A,B,C<=50,1<=T<=1000),它们分别代表城堡的大小和魔王回来的时间.然后是A块输入数据(先是第0块,然后是第1块,第2块......),每块输入数据有B行,每行有C个正整数,代表迷宫的布局,其中0代表路,1代表墙.(如果对输入描述不清楚,可以参考Sample Input中的迷宫描述,它表示的就是上图中的迷宫)
特别注意:本题的测试数据非常大,请使用scanf输入,我不能保证使用cin能不超时.在本OJ上请使用Visual C++提交.
特别注意:本题的测试数据非常大,请使用scanf输入,我不能保证使用cin能不超时.在本OJ上请使用Visual C++提交.
Output
对于每组测试数据,如果Ignatius能够在魔王回来前离开城堡,那么请输出他最少需要多少分钟,否则输出-1.
Sample Input
1 3 3 4 20 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0
Sample Output
11
Author
Ignatius.L
Recommend
Ignatius.L
看到这个题目后,习惯性的用深搜做了,结果很悲惨的超时了,尽量又花了 还是一样。
然后改用不太熟悉的bfs ,纠结的AC了。
这个题目要用bfs的原因我想首先是三维的数据搜索量比较大,同时要求的是能走到终点的最短时间。这时候BFS的优势就体现出来了,
bfs按层次搜索,能够最快的搜索到能够走到终点的最短时间。
下面贴我的代码:
#include <stdio.h>
#include <string.h>
#include <queue>
using namespace std;
#define INF 99999999
int d[6][3]={{0,0,1},{0,1,0},{1,0,0},{-1,0,0},{0,-1,0},{0,0,-1}};
int Maze[52][52][52];
int T,ct,A,B,C,res;
typedef struct
{
int x,y,z;
int time;
}node;
node p,q;
/*void dfs(int x,int y,int z)
{
if(x==A-1&&y==B-1&&z==C-1)
{
if(ct<min)
min=ct;
return ;
}
if(x<0||y<0||z<0||x>A-1||y>B-1||z>C-1||ct>T||(A-1-x)+(B-1-y)+(C-1-z)>T)
return ;
for(int i=0;i<=5;i++) //深搜关键
{
if(x+d[i][0]<0||y+d[i][1]<0||z+d[i][2]<0||x+d[i][0]>A-1||y+d[i][1]>B-1||z+d[i][2]>C-1||ct>T)
continue ;
else if(Maze[x+d[i][0]][y+d[i][1]][z+d[i][2]]==0)
{
++ct;
Maze[x+d[i][0]][y+d[i][1]][z+d[i][2]]=1;
dfs(x+d[i][0],y+d[i][1],z+d[i][2]);
Maze[x+d[i][0]][y+d[i][1]][z+d[i][2]]=0;
--ct;
}
}
}*/
void bfs(int x,int y,int z)
{
int i,tx,ty,tz,time;
queue <node> qu; //放到BFS中,开始放在外面WA了一次 因为定义全局队列时当调用时可能不为空的队列
p.x=x;
p.y=y;
p.z=z;
p.time=0;
qu.push(p);
while(!qu.empty())
{
q=qu.front();
qu.pop();
if(q.time<=T&&q.x==A-1&&q.y==B-1&&q.z==C-1) //结束条件,BFS相比比DFS的一个好处就是能“最快找到最短的时间”
{
res=q.time;
break;
}
for(i=0;i<=5;i++)
{
tx=q.x+d[i][0];
ty=q.y+d[i][1];
tz=q.z+d[i][2];
time=q.time+1;
if(tx>=0&&ty>=0&&tz>=0&&tx<A&&ty<B&&tz<C&&(A+B+C-tx-ty-tz-3<=T-time)&&Maze[tx][ty][tz]==0) //限制队列元素的插入
{
Maze[tx][ty][tz]=1; //注意插入队列后,就把当前点标记
p.x=tx;
p.y=ty;
p.z=tz;
p.time=time;
qu.push(p);
}
}
}
}
void print()
{
int i,j,l;
for(i=0;i<A;i++)
for(j=0;j<B;j++)
{
for(l=0;l<C;l++)
printf("%d",Maze[i][j][l]);
printf("\n");
}
}
int main()
{
int k,i,j,l;
scanf("%d",&k);
while(k--)
{
scanf("%d%d%d%d",&A,&B,&C,&T);
for(i=0;i<A;i++)
for(j=0;j<B;j++)
for(l=0;l<C;l++)
scanf("%d",&Maze[i][j][l]);
res=INF;
bfs(0,0,0);
// print();
// dfs(0,0,0);
if(res==INF)
printf("-1\n");
else
printf("%d\n",res);
}
return 0;
}
/*
1
3 3 4 20
0 1 1 1
0 0 1 1
0 1 1 1
1 1 1 1
1 0 0 1
0 1 1 1
0 0 0 0
0 1 1 0
0 1 1 0
*/