#include <iostream> using namespace std; #define M 5 #define N 4 int a[M][N] = {0,1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,1,0,1,0}; int b[M] = {}; void genLine(int n) { if (n == M) { for (int i = 0; i < M; i++) { cout<<b[i]<<' '; } cout<<endl; } if (n==0) { for (int j = 0; j < N; j++) { if (a[0][j] == 1) { b[0] = j; genLine(n+1); } } } if (n > 0) { int p = b[n-1]; if (b[n-1] > 0 && a[n][b[n-1]-1] == 1){ b[n] = b[n-1]-1; genLine(n+1); } b[n-1] = p; if (a[n][b[n-1]] == 1){ b[n] = b[n-1]; genLine(n+1); } b[n-1] = p; if (b[n-1] < N && a[n][b[n-1]+1] == 1){ b[n] = b[n-1]+1; genLine(n+1); } } } int main (int argc,char** args) { for (int i = 0; i < 5; i++) { for (int j = 0; j < 4; j++) { cout<<a[i][j]<<" "; } cout<<endl; } cout<<"----------------------------------"<<endl; genLine(0); return 0; }
0 1 0 1
0 1 1 0
1 1 0 0
1 0 1 0
1 0 1 0
----------------------------------
1 1 0 0 0
1 1 1 0 0 表示红色部分连通路径,第一行1列,第二行1列,第三行1列,第四行0列,第五行0列
1 1 1 2 2
1 2 1 0 0
1 2 1 2 2
3 2 1 0 0
3 2 1 2 2
这个算法加入域值控制扩展一下就可以识别验证码中的连续干扰线
原始图片
算法找到的干扰线,为了显示,显示成红色了。当然我们很容易把这条红色的干扰线删掉,然后用一下腐蚀算法,图片的预处理效果就比较好了。
#include <iostream> using namespace std; #define M 130 #define N 36 int a[130][36] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,1,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; int b[M] = {}; int threshold = 10; int offset = 11; void genLine(int n) { if (n < offset) { b[n] = -1; genLine(n+1); } if (n == M) { for (int i = 0; i < M; i++) { cout<<b[i]<<' '; } cout<<endl; } if (n==offset) { for (int j = 0; j < N; j++) { if (a[offset][j] == 1) { b[offset] = j; genLine(n+1); } } } if (n > 0 && n < M) { int hasMore = 0; if (a[n][b[n-1]] == 1){ b[n] = b[n-1]; hasMore = 1; genLine(n+1); } else { if (b[n-1] > 0 && a[n][b[n-1]-1] == 1){ b[n] = b[n-1]-1; hasMore = 1; genLine(n+1); } if (b[n-1] < N-1 && a[n][b[n-1]+1] == 1){ b[n] = b[n-1]+1; hasMore = 1; genLine(n+1); } } if (n - offset > threshold && hasMore == 0) { for (int i = 0; i < n; i++) { cout<<b[i]<<' '; } cout<<endl; } } } int main (int argc,char** args) { cout<<"----------------------------------"<<endl; genLine(0); return 0; }