人工智能:模型与算法-中国大学mooc 测试题全套答案(更新至期末考)

预祝期末顺利!全篇完,还望大哥们给个赞,谢谢

第一周

第二周

第三周

第四周

第五周

第六周

第七周

 

第8周 

第九周

 

第十周:强化学习

 

第十一周

如果还不错,在文末给个赞支持一下呗 

期末考

谢谢大家,预祝期末顺利,别望了点赞哦,谢谢!

很高兴为你解答问题!关于使用PyTorch的backward()编程实现例题,我可以为您提供以下解答: 误差反向传播(backpropagation,BP)算法是深度学习中非常重要的一种算法。在PyTorch中,可以使用其自带的backward()函数来实现BP算法。下面是一个简单的例子: ``` import torch # 定义输入和输出 inputs = torch.tensor([[0.8, 0.2], [0.1, 0.9]]) targets = torch.tensor([[0.4, 0.6], [0.1, 0.9]]) # 定义模型参数 w1 = torch.randn(2, 3, requires_grad=True) w2 = torch.randn(3, 2, requires_grad=True) b1 = torch.randn(1, 3, requires_grad=True) b2 = torch.randn(1, 2, requires_grad=True) # 前向传播 h = torch.matmul(inputs, w1) + b1 h_relu = torch.relu(h) outputs = torch.matmul(h_relu, w2) + b2 # 计算损失并进行反向传播 loss = torch.nn.functional.mse_loss(outputs, targets) loss.backward() # 更新参数 with torch.no_grad(): w1 -= 0.01 * w1.grad w2 -= 0.01 * w2.grad b1 -= 0.01 * b1.grad b2 -= 0.01 * b2.grad w1.grad.zero_() w2.grad.zero_() b1.grad.zero_() b2.grad.zero_() ``` 在这个例子中,我们首先定义了一个包含两个输入和两个输出的简单的全连接神经网络。我们随机初始化了模型的权重和偏差,并对模型进行了一次前向传播,得到模型的输出并计算出损失。接下来,我们使用backward()函数计算出损失对每个模型参数的梯度,并使用梯度下降来更新模型参数。最后,我们将梯度清零以准备下一次迭代。 希望这个例子能为您提供帮助!
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值