每天更新图机器学习(内含大量机器学习相关概念理解)基本概念(1)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,但是

是在学习的过程当中会遇到各种各样的全新名词,本文主要将其中的一些名词给予解释,概念主要以图机器学习为主,也混杂着很多的机器学习和深度学习的知识。

一、图机器学习中齐次图是什么?

在图机器学习中,齐次图通常指的是一种对图数据进行编码的方法。图数据是由节点和边组成的数据结构,每个节点代表一个对象,每条边代表节点之间的关系。齐次图将图数据中的节点和边都表示为向量,并通过矩阵进行编码。

具体来说,齐次图将节点表示为一个特征向量,可以采用向量表示方法(如词袋模型、Word2Vec等)或图卷积神经网络(Graph Convolutional Network,GCN)等方法进行特征提取。同时,边也可以表示为一个向量,通常是通过某种关系嵌入技术将边的关系编码为向量。这样,图数据就可以表示为一个由节点向量和边向量组成的矩阵。

通过对图数据进行编码,齐次图可以将图机器学习问题转化为矩阵计算问题,进一步利用矩阵分解、矩阵运算等方法进行机器学习任务,如节点分类、图分类、图生成等。这种编码方法可以保留节点和边之间的关系信息,并对图结构进行高效的计算和学习。

二、图卷积神经网络如何进行特征提取?

图卷积神经网络 (Graph Convolutional Networks, GCN) 是一种用于对图数据进行特征提取的深度学习模型。它在卷积神经网络 (Convolutional Neural Networks, CNN) 的基础上进行了改进,以适应图数据的特点。

GCN的核心思想是通过对节点及其邻居节点的特征进行聚合来提取特征。具体的特征提取过程如下:

1. 假设我们有一个图 G=(V, E),V 表示节点集合,E 表示边集合。每个节点的特征表示为一个 d 维向量。

2. 初始化节点的特征向量,可以使用词袋模型、Word2Vec等技术进行初始化。

3. 进行多层卷积操作,每一层的特征向量都可以通过以下步骤进行计算:
   a. 首先,对每个节点 i,将其特征向量与邻居节点的特征向量按照一定的权重进行融合(通常使用均匀加权或采用图拉普拉斯矩阵进行归一化)。
   
   b. 然后,将融合后的特征向量通过一个非线性激活函数进行变换。常用的激活函数有ReLU、sigmoid等。

   c. 最后,可以选择将多层特征向量进行聚合或下采样,以得到最终的图特征向量。

通过多层卷积操作,GCN可以逐渐聚集全局和局部关系的信息,提取图数据中节点的高维特征。这些特征可以用于节点分类、图分类、图生成等任务。需要注意的是,GCN是一种无监督学习方法,它可以利用图结构和节点特征进行训练,无需节点标签。

三、词袋模型

词袋模型(Bag of Words)是一种用于文本表示和处理的简单而常用的方法。它基于一个假设:在一个文档中,每个单词的出现与其他单词的顺序和上下文无关,只与其自身的出现次数有关。

词袋模型的步骤如下:

1. 收集文本数据:首先需要收集文本数据集,可以是一系列文本文档或语料库。

2. 分词:将文本数据分割成单个单词或词语。一种常用的方法是使用空格或标点符号进行分割,也可以使用更复杂的分词技术。

3. 构建词汇表:将分词后得到的所有单词构建一个词汇表,其中每个单词都有一个唯一的编号。

4. 文本向量化:对每个文本文档,根据词汇表生成一个向量表示。向量的每个元素表示对应单词在文档中的出现次数或频率。

5. 特征提取和处理:对于文本分类或处理任务,可以进行一些附加的特征提取和处理操作,如特征选择、词频-逆文档频率(TF-IDF)加权等。

词袋模型的优点是简单直观,易于实现和理解。然而,它忽略了单词的顺序和上下文信息,可能导致信息的丢失。因此,在处理需要考虑上下文的任务(如机器翻译和自然语言理解)时,词袋模型可能不太适合。

四、卷积神经网络的基本步骤?

卷积神经网络(CNN)是一种常用于图像处理和计算机视觉任务的深度学习模型。它的基本步骤如下:

1. 卷积层(Convolutional Layer):卷积层是CNN的核心部分,它通过滑动一个卷积核在输入图像上进行局部感知操作,提取局部特征。卷积核与输入图像进行逐元素相乘,然后对结果进行求和,得到卷积操作的输出特征图。卷积层可以使用不同的卷积核来提取不同特征。

2. 激活函数(Activation Function):卷积操作的输出经常通过一个非线性激活函数进行变换,常用的激活函数有ReLU、sigmoid和tanh。激活函数的作用是引入非线性变换,增加模型的表达能力。

3. 池化层(Pooling Layer):池化层用于减小特征图的空间尺寸和参数数量,同时增加模型的平移不变性。常用的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。池化操作会将特征图划分为不重叠的块,然后对每个块进行汇总操作,得到池化后的特征图。

4. 全连接层(Fully Connected Layer):全连接层将池化层的输出特征图展开成一个向量,然后通过一个全连接层进行分类或回归操作。全连接层的每个神经元都与前一层的所有神经元连接,因此可以捕捉输入特征之间的复杂关系。

5. 输出层(Output Layer):输出层根据任务的不同选择不同的激活函数。例如,对于多分类任务,可以使用softmax激活函数;对于二分类任务,可以使用sigmoid激活函数。

在实际应用中,CNN可能包含多个卷积层和池化层的堆叠,以提取更复杂的特征。还可以使用批标准化(Batch Normalization)和dropout等技术来增强模型的鲁棒性和泛化能力。最后,CNN的训练通常使用随机梯度下降(Stochastic Gradient Descent)及其变种算法进行优化。

五、图机器学习中的池化技术?

图机器学习中的池化技术(Pooling)是一种用于减少图形数据维度的常用技术。池化常用于卷积神经网络(CNN)等模型中。

池化的目的是通过对数据进行降维,提取出图像中最重要的特征,同时减少计算量和参数数量。

常见的池化技术包括最大池化(Max Pooling)和平均池化(Average Pooling):

1. 最大池化:在最大池化中,从输入的特征图中选择每个池化区域中的最大值作为输出。它能够保留图像特征的主要信息,提高模型对于目标的感知。

2. 平均池化:在平均池化中,从输入的特征图中计算每个池化区域的平均值作为输出。它能够有效地降低噪声影响,平滑图像特征。

池化操作通常在卷积操作之后进行,通过设置池化窗口大小和步幅来控制输出特征图的大小。

池化技术的优点是能够减少计算量和参数数量,提高计算效率和模型的泛化能力。另外,通过降低特征图的维度,池化还可以增加模型对于平移和旋转等图像变化的鲁棒性。

然而,池化也会造成信息的丢失。尤其是在池化窗口大小较大的情况下,可以丢失细微的特征。因此,在某些情况下,可以通过调整池化操作的参数来平衡特征保留和降维的效果。

六、DRGCN生成对抗网络?

对于DRGCN(Deep Relational Graph Convolutional Network)生成对抗网络,目前尚无特定的文献或方法描述。请注意,DRGCN是一种用于处理图数据的图卷积网络模型,而生成对抗网络(GAN)是一种用于生成或模仿数据分布的神经网络架构。

然而,可以将DRGCN与GAN结合使用,以在图数据生成领域中实现生成对抗网络的方法。具体来说,可以采用以下步骤:

1. 定义生成器(Generator)和判别器(Discriminator)网络:生成器网络接收来自随机噪声向量或其他输入的消息,并尝试生成近似于真实图数据的伪造图数据,而判别器网络旨在区分真实图数据和生成的伪造图数据。生成器和判别器网络都可以使用DRGCN或其他适当的图卷积网络作为基本组件。

2. 定义损失函数:损失函数包括生成器和判别器的损失。生成器的目标是使生成的伪造图数据更加逼真,以最小化判别器将其分类为伪造的概率,而判别器的目标是准确地分类真实图数据和生成的伪造图数据。

3. 进行训练:通过交替的训练步骤,首先固定判别器的权重,训练生成器来最小化生成器的损失;然后固定生成器的权重,训练判别器来最小化判别器的损失。重复这个过程,直到生成器能够生成与真实图数据相似的伪造图数据。

4. 生成新的图数据:一旦训练完成,生成器可以接收随机噪声作为输入,并生成与真实图数据类似的新的伪造图数据。

这只是一种基本的概述和方法,具体实现和细节取决于具体的应用和问题领域。在实践中,还可以采用其他技巧和策略来改进和优化DRGCN生成对抗网络的性能和稳定性。

目录

文章目录

前言

一、图机器学习中齐次图是什么?

二、图卷积神经网络如何进行特征提取?

三、词袋模型

四、卷积神经网络的基本步骤?

五、图机器学习中的池化技术?

六、DRGCN生成对抗网络?

总结



总结

这里对文章进行总结:本文主要是作者在阅读《A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions》这篇综述的时候查阅总结的有关于机器学习尤其是图机器学习的相关解释,希望能帮助到同样在看这篇综述的朋友们更好的理解这篇综述。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值