每天更新图机器学习(内含大量机器学习相关概念理解)基本概念(4)

前言

随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,但是

是在学习的过程当中会遇到各种各样的全新名词,本文主要将其中的一些名词给予解释,概念主要以图机器学习为主,也混杂着很多的机器学习和深度学习的知识。

目录

前言

一、图增强技术(Graph Augmentation)

二、图增强中的上下文增强和拓扑增强

三、MML模型(Multimodal Model)

四、考虑度的模型调节DAMM(Degree-aware Model Modulation)

总结


一、图增强技术(Graph Augmentation)

图增强(Graph Augmentation)是指通过添加、删除或修改图中的节点和边,来改变图的结构和特性的过程。图增强是图数据处理和分析中的关键步骤之一,它可以用于改善图的质量、增强分析效果和生成新的图数据。

图增强的方法和技术有很多种,以下是一些常用的图增强方法:

1. 添加节点和边:可以向图中添加新的节点和边来丰富图的结构和关系。例如,在社交网络中,可以通过添加新的用户和他们之间的关系来扩展网络。在推荐系统中,可以向用户-物品图中添加新的用户和物品以提高推荐的准确性。

2. 删除节点和边:可以从图中删除部分节点和边来简化图的结构和减少噪声。删除无关紧要的节点和边可以提高图的清晰度和分析效率。例如,在网络流分析中,可以删除不重要的连接来简化流网络。

3. 修改节点和边属性:可以通过修改节点和边的属性来改变图的特性。例如,在推荐系统中,可以通过修改用户和物品的属性来调整推荐结果。在生物网络分析中,可以通过修改基因和蛋白质节点的属性来探索其功能和相互作用。

4. 转换图的表示形式:可以将图从一种表示形式转换为另一种表示形式,以便于特定任务的分析和处理。例如,可以将图从邻接矩阵表示转换为邻接列表表示,或者将图从无向图转换为有向图。

图增强在图数据处理和分析中起着重要的作用。它可以帮助我们改善图的质量、增强分析效果,并生成更丰富和有用的图数据。不同的图增强方法可以根据具体任务和需求选择和组合使用。

二、图增强中的上下文增强和拓扑增强

上下文增强和拓扑增强是图增强的两个常见方向。

上下文增强:上下文增强是指通过引入节点或边的附加信息来增强图的表示能力。这些附加信息可以包括节点和边的属性、关系、标签等。通过将上下文信息与图的结构信息相结合,可以提高图数据的丰富性和表达能力。例如,在社交网络中,可以将用户的个人资料、兴趣爱好等属性作为节点的上下文信息,从而更好地挖掘用户之间的关系和兴趣。

拓扑增强:拓扑增强是指通过修改图的结构或拓扑关系来改变图的特性。拓扑增强旨在改善图的连通性、密度、分布等特性,以便更好地支持特定的任务和分析。例如,在推荐系统中,可以通过添加新的社交连接来扩展社交网络的拓扑结构,从而增强推荐的准确性和个性化程度。在交通网络中,可以通过添加新的道路、车辆或交通规则来拓展网络的拓扑结构,以便更好地模拟和优化交通流动。

上下文增强和拓扑增强通常可以结合使用,以实现更全面和有效的图增强。通过引入丰富的上下文信息和调整图的拓扑结构,可以提高图数据的表达能力、分析效果和应用效果。因此,上下文增强和拓扑增强是图增强中值得关注和应用的两个重要方向。

三、MML模型(Multimodal Model)

MML(Multimodal Model)模型是一种多模态模型,用于处理和融合多个不同类型的输入数据,例如文本、图像、语音等。MML模型主要用于多模态任务,如文本图像融合、跨模态检索等。

MML模型的设计思路是将多个模态的输入数据映射到一个统一的表示空间中,并通过学习相应的权重和参数来实现模态之间的融合。常见的MML模型包括以下几种:

1. Early Fusion(早期融合):在早期融合中,将每个模态的特征提取部分分别应用于对应的模态数据,然后将不同模态的特征连接或叠加在一起,形成一个统一的特征表示。早期融合可以通过共享权重来学习模态之间的相关性。

2. Late Fusion(晚期融合):在晚期融合中,每个模态的特征提取部分独立进行,然后将它们的特征表示分别输入到模态间的融合模型中,最后通过融合模型来学习模态之间的关联。晚期融合可以更好地处理不同模态数据之间的差异性。

3. Cross-Modal Attention(跨模态注意力):跨模态注意力模型通过计算不同模态的相似度和权重,来实现模态之间的融合。具体地,利用注意力机制来计算模态之间的权重,并根据权重对每个模态的特征进行加权融合。

4. Multimodal Generative Models(多模态生成模型):多模态生成模型能够生成新的多模态数据,根据输入的单模态数据,通过学习数据的分布和潜在空间,生成对应模态的输出数据。常见的多模态生成模型有VAE-GAN、Adversarial Autoencoder等。

这些MML模型可以根据不同任务和需求进行选择和组合,以实现多模态数据的融合和处理。

四、考虑度的模型调节DAMM(Degree-aware Model Modulation)

Degree-aware model modulation(DAMM)是一种用于图神经网络(Graph Neural Networks)的方法,旨在提高图节点分类任务的性能。在图节点分类任务中,给定一个图,目标是预测每个节点的标签。

DAMM方法主要关注节点的度(degree),即节点的邻居数量。它认为节点的度可以提供重要的结构信息,从而帮助节点分类任务。传统的图神经网络通常只关注节点自身的特征和邻居节点的特征,而忽略了节点度的影响。

DAMM通过引入一个度感知的门控模块来对节点的特征进行调节。具体来说,它首先计算节点的度,并将度信息通过一个多层感知机(MLP)转换为度向量。然后,它使用度向量和节点的特征向量来计算一个门控向量。门控向量用于调节节点特征的权重,使具有不同度的节点在特征传播和更新过程中得到不同的关注程度。最后,经过门控调节后的节点特征被用于节点分类任务。

DAMM方法通过引入度感知的门控模块,使模型能够更好地利用节点的度信息,并提高图节点分类任务的性能。它被证明在多个图数据集上具有有效性和泛化能力。

总结

这里对文章进行总结:本文主要是作者在阅读《A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions》这篇综述的时候查阅总结的知识概念和方法,有关于机器学习尤其是图机器学习的相关解释,这篇综述主要是聚焦了图机器学习中的不平衡类问题的研究,希望能帮助到同样在看这篇综述的朋友们更好的理解这篇综述。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值