题意:
给你一个无向图,让你找一个它的子图,使得这个子图所有边权减去点权最大。
思路:
网络流最小割。
据说是一个很经典的题目,但是弱鸡表示没有做过。。
设所有边权和为sum,选中的边权和为esum,点权和为vsum,没有选的边的权值和为nesum,没有选的点的权值和为vesum,那么就是要esum-vsum是最大,也就是让sum-nesum-vsum最大,即令sum-(nesum+vsum)最大。
因为sum是固定的,所以我们可以求后面括号里的最小值,即求没有选中的边加上选中的点的最小值。
考虑以下建图方法:
①建立超级源点和超级汇点。
将所有的边都化成点,源点连接所有的边,cap为边权。
将所有的点都连接到汇点,cap为点权。
②所有边化成的点连接到它原来的边连接的点,边权为inf。
这个时候图被分成了四部分,从左到右分别为源点、边点、点、汇点。
求最小割。
因为边点到点的权值都是inf,所以最小割肯定是在源点到边点和点到汇点进行割边。
这个时候整个图被分成了两个部分,观察一下可以发现(其实就是因为我不知道怎么解释了,画个图看看 ),割掉的最左边的部分的边对应的就是ensum,割掉的最右边的部分的边对应的就是vsum,所以最小的(ensum+vsum)就求出来啦,用sum减去就是结果了。
总结:
没见过的题型,消化消化。
代码:
#define push_back pb
#define make_pair mk
#define rd read()
#define mem(a,b) memset(a,b,sizeof(a))
#define bug printf("*********\n");
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define FIN freopen(D://code//in.txt", "r", stdin);
#define debug(x) cout<<"["<<x<<"]" <<endl;
#define IO ios::sync_with_stdio(false),cin.tie(0);
#pragma comment(linker,"/STACk:1024000000,1024000000")
//#include<bits/stdc++.h>
#include<time.h>
#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<cmath>
#include<map>
#include<algorithm>
#include<string>
#include<string.h>
#include<set>
#include<queue>
#include<stack>
#include<functional>
using std::pair;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
//const double PI=acos(-1);
const int maxn = 3e3 + 10;
const int maxm = 1e6 + 10;
const int mod = 1000000007;
const int inf = 0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const double dinf=1e20;
const double eps=1e-8;
using namespace std;
ll read() {
ll X = 0, p = 1; char c = getchar();
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') p = -1;
for(; c >= '0' && c <= '9'; c = getchar()) X = X * 10 + c - '0';
return X * p;
}
//*********************************************************************
int n,m,s,t;
struct node
{
int to,next;
ll cap;
}e[maxm];
int head[maxn],lev[maxn],cur[maxn];
int cnt=0;
void init()
{
cnt=0;
mem(head,-1);
}
void add(int u,int v,ll w)
{
e[cnt].to=v;
e[cnt].cap=w;
e[cnt].next=head[u];
head[u]=cnt++;
e[cnt].to=u;
e[cnt].cap=0;
e[cnt].next=head[v];
head[v]=cnt++;
}
bool bfs()
{
mem(lev,-1);
int que[maxn*2];
int thead=0,tail=0;
que[tail++]=s;
lev[s]=0;
while(thead<tail)
{
int u=que[thead];
if(u==t) return 1;
for(int i=head[u];~i;i=e[i].next)
{
int v=e[i].to;
if(lev[v]==-1&&e[i].cap>0)
{
lev[v]=lev[u]+1;
que[tail++]=v;
}
}
thead++;
}
return false;
}
ll dfs(int u,ll cap)
{
if(u==t||cap==0) return cap;
ll flow=0,f;
for(int i=head[u];~i;i=e[i].next)
{
int v=e[i].to;
if(lev[v]==lev[u]+1&&(f=dfs(v,min(cap-flow,e[i].cap)))>0)
{
e[i].cap-=f;
e[i^1].cap+=f;
flow+=f;
if(flow==cap) return cap;
}
}
if(!flow) lev[u]=-1;
return flow;
}
ll dinic()
{
ll ans=0;
while(bfs())
{
ans+=dfs(s,inf);
}
return ans;
}
int main()
{
mem(head,-1);
cin>>n>>m;
s=1;
t=m+n+2;
ll sum=0;
for(int i=1;i<=n;i++)
{
ll a;
cin>>a;
add(i+m+1,t,a);
}
for(int i=1;i<=m;i++)
{
ll u,v,w;
cin>>u>>v>>w;
sum+=w;
add(s,i+1,w);
add(i+1,u+m+1,INF);
add(i+1,v+m+1,INF);
}
cout<<max(0ll,sum-dinic())<<endl;
}