[网络流]codeforce round 1082 G. Petya and Graph

题意:

给你一个无向图,让你找一个它的子图,使得这个子图所有边权减去点权最大。



思路:

网络流最小割。

据说是一个很经典的题目,但是弱鸡表示没有做过。。

设所有边权和为sum,选中的边权和为esum,点权和为vsum,没有选的边的权值和为nesum,没有选的点的权值和为vesum,那么就是要esum-vsum是最大,也就是让sum-nesum-vsum最大,即令sum-(nesum+vsum)最大。

因为sum是固定的,所以我们可以求后面括号里的最小值,即求没有选中的边加上选中的点的最小值。



考虑以下建图方法:

①建立超级源点和超级汇点。

将所有的边都化成点,源点连接所有的边,cap为边权。

将所有的点都连接到汇点,cap为点权。

②所有边化成的点连接到它原来的边连接的点,边权为inf。

这个时候图被分成了四部分,从左到右分别为源点、边点、点、汇点。


求最小割。


因为边点到点的权值都是inf,所以最小割肯定是在源点到边点和点到汇点进行割边。

这个时候整个图被分成了两个部分,观察一下可以发现(其实就是因为我不知道怎么解释了,画个图看看 ),割掉的最左边的部分的边对应的就是ensum,割掉的最右边的部分的边对应的就是vsum,所以最小的(ensum+vsum)就求出来啦,用sum减去就是结果了。

总结:

没见过的题型,消化消化。

代码:
#define push_back pb
#define make_pair mk
#define rd read()
#define mem(a,b) memset(a,b,sizeof(a))
#define bug printf("*********\n");
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define FIN freopen(D://code//in.txt", "r", stdin);
#define debug(x) cout<<"["<<x<<"]" <<endl;
#define IO ios::sync_with_stdio(false),cin.tie(0);
#pragma comment(linker,"/STACk:1024000000,1024000000")
//#include<bits/stdc++.h>
#include<time.h>
#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<cmath>
#include<map>
#include<algorithm>
#include<string>
#include<string.h>
#include<set>
#include<queue>
#include<stack>
#include<functional>
using std::pair;


typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
//const double PI=acos(-1);


const int maxn = 3e3 + 10;
const int maxm = 1e6 + 10;
const int mod = 1000000007;
const int inf = 0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const double dinf=1e20;
const double eps=1e-8;
using namespace std;

ll read() {
    ll X = 0, p = 1; char c = getchar();
    for(; c > '9' || c < '0'; c = getchar()) if(c == '-') p = -1;
    for(; c >= '0' && c <= '9'; c = getchar()) X = X * 10 + c - '0';
    return X * p;
}
//*********************************************************************
int n,m,s,t;
struct node
{
    int to,next;
    ll cap;
}e[maxm];
int head[maxn],lev[maxn],cur[maxn];
int cnt=0;
void init()
{
    cnt=0;
    mem(head,-1);
}
void add(int u,int v,ll w)
{
    e[cnt].to=v;
    e[cnt].cap=w;
    e[cnt].next=head[u];
    head[u]=cnt++;
    e[cnt].to=u;
    e[cnt].cap=0;
    e[cnt].next=head[v];
    head[v]=cnt++;
}

bool bfs()
{
    mem(lev,-1);
    int que[maxn*2];
    int thead=0,tail=0;
    que[tail++]=s;
    lev[s]=0;
    while(thead<tail)
    {
        int u=que[thead];
        if(u==t) return 1;
        for(int i=head[u];~i;i=e[i].next)
        {
            int v=e[i].to;
            if(lev[v]==-1&&e[i].cap>0)
            {
                lev[v]=lev[u]+1;
                que[tail++]=v;
            }
        }
        thead++;
    }
    return false;
}
ll dfs(int u,ll cap)
{
    if(u==t||cap==0) return cap;
    ll flow=0,f;
    for(int i=head[u];~i;i=e[i].next)
    {
        int v=e[i].to;
        if(lev[v]==lev[u]+1&&(f=dfs(v,min(cap-flow,e[i].cap)))>0)
        {
            e[i].cap-=f;
            e[i^1].cap+=f;
            flow+=f;
            if(flow==cap) return cap;
        }
    }
    if(!flow) lev[u]=-1;
    return flow;
}

ll dinic()
{
    ll ans=0;
    while(bfs())
    {
        ans+=dfs(s,inf);
    }
    return ans;
}
int main()
{
    mem(head,-1);
    cin>>n>>m;
    s=1;
    t=m+n+2;
    ll sum=0;
    for(int i=1;i<=n;i++)
    {
        ll a;
        cin>>a;
        add(i+m+1,t,a);
    }
    for(int i=1;i<=m;i++)
    {
        ll u,v,w;
        cin>>u>>v>>w;
        sum+=w;
        add(s,i+1,w);
        add(i+1,u+m+1,INF);
        add(i+1,v+m+1,INF);
    }
    cout<<max(0ll,sum-dinic())<<endl;
}

数据中心机房是现代信息技术的核心设施,它承载着企业的重要数据和服务,因此,其基础设计与规划至关重要。在制定这样的方案时,需要考虑的因素繁多,包括但不限于以下几点: 1. **容量规划**:必须根据业务需求预测未来几年的数据处理和存储需求,合理规划机房的规模和设备容量。这涉及到服务器的数量、存储设备的容量以及网络带宽的需求等。 2. **电力供应**:数据中心是能源消耗大户,因此电力供应设计是关键。要考虑不间断电源(UPS)、备用发电机的容量,以及高效节能的电力分配系统,确保电力的稳定供应并降低能耗。 3. **冷却系统**:由于设备密集运行,散热问题不容忽视。合理的空调布局和冷却系统设计可以有效控制机房温度,避免设备过热引发故障。 4. **物理安全**:包括防火、防盗、防震、防潮等措施。需要设计防火分区、安装烟雾探测和自动灭火系统,设置访问控制系统,确保只有授权人员能进入。 5. **网络架构**:规划高速、稳定、冗余的网络架构,考虑使用光纤、以太网等技术,构建层次化网络,保证数据传输的高效性和安全性。 6. **运维管理**:设计易于管理和维护的IT基础设施,例如模块化设计便于扩展,集中监控系统可以实时查看设备状态,及时发现并解决问题。 7. **绿色数据中心**:随着环保意识的提升,绿色数据中心成为趋势。采用节能设备,利用自然冷源,以及优化能源管理策略,实现低能耗和低碳排放。 8. **灾难恢复**:考虑备份和恢复策略,建立异地灾备中心,确保在主数据中心发生故障时,业务能够快速恢复。 9. **法规遵从**:需遵循国家和地区的相关法律法规,如信息安全、数据保护和环境保护等,确保数据中心的合法运营。 10. **扩展性**:设计时应考虑到未来的业务发展和技术进步,保证机房有充足的扩展空间和升级能力。 技术创新在数据中心机房基础设计及规划方案中扮演了重要角色。例如,采用虚拟化技术可以提高硬件资源利用率,软件定义网络(SDN)提供更灵活的网络管理,人工智能和机器学习则有助于优化能源管理和故障预测。 总结来说,一个完整且高效的数据中心机房设计及规划方案,不仅需要满足当前的技术需求和业务目标,还需要具备前瞻性和可持续性,以适应快速变化的IT环境和未来可能的技术革新。同时,也要注重经济效益,平衡投资成本与长期运营成本,实现数据中心的高效、安全和绿色运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值