题意:
给你一个序列,一个c,让你选择一个连续的区间和一个k,然后将这个区间中的值全部加上(c-k),使得整个序列中的c最多。
思路:
代码很短,思路题。
转化一下题意,用cnt(l,r,x)代表l到r中x的个数。
其实题目就是要求cnt(l,r,x)+cnt(1,l,c)+cnt(r,n,c)最大,转化一下就是求(cnt(l,r,x)-cnt(l,r,c))+cnt(1,n,c)的最大值。
也就是求cnt(l,r,x)-cnt(l,r,c)的最大值。
我们枚举每一个x,对于一个固定的x,转化一下题意,其实题意就是给你一个序列{1,-1,1,1,1,-1,-1,1,1,-1······}这个序列只由1和-1组成,(其中1代表x,-1代表c),然后求区间最大和就好了。
总结:
代码:
#define push_back pb
#define make_pair mk
#define rd read()
#define mem(a,b) memset(a,b,sizeof(a))
#define bug printf("*********\n");
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define FIN freopen(D://code//in.txt", "r", stdin);
#define debug(x) cout<<"["<<x<<"]" <<endl;
#define IO ios::sync_with_stdio(false),cin.tie(0);
#pragma comment(linker,"/STACk:1024000000,1024000000")
//#include<bits/stdc++.h>
#include<time.h>
#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<cmath>
#include<map>
#include<algorithm>
#include<string>
#include<string.h>
#include<set>
#include<queue>
#include<stack>
#include<functional>
using std::pair;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
//const double PI=acos(-1);
const int maxn = 5e5 + 10;
const int maxm = 1e6 + 10;
const int mod = 1000000007;
const int inf = 0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const double dinf=1e20;
const double eps=1e-8;
using namespace std;
ll read() {
ll X = 0, p = 1; char c = getchar();
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') p = -1;
for(; c >= '0' && c <= '9'; c = getchar()) X = X * 10 + c - '0';
return X * p;
}
//*********************************************************************
int sum[maxn];
int a[maxn];
vector<int>g[maxn];
int main()
{
int n,c;
cin>>n>>c;
for(int i=1;i<=n;i++)
{
cin>>a[i];
sum[i]=sum[i-1]+(a[i]==c?1:0);
g[a[i]].pb(i);
}
int ans=0;
for(int i=1;i<=500000;i++)
{
if(i==c||g[i].size()==0) continue;
if(g[i].size()==1) ans=max(ans,1); //只有一个x的情况
int pre=g[i][0]; //第一个x
int num=1;
for(int j=1;j<g[i].size();j++)
{
int p=g[i][j];
num=num+1+sum[pre]-sum[p]; //减去这个区间里的c
if(num<=0) num=1; //重新开始计前缀和
ans=max(ans,num);
pre=p;
}
}
cout<<ans+sum[n]<<endl;
}