dp[i][j][k]记录走到i,j节点的时候,两者的差值为x的方案数
每次枚举x (tmp+=(a[i][j]))%=11 (tmp2=(11-tmp1))%=11 在这里的tmp2就实现了人与剑之间的转换
#include<cstdio>
#include<cstring>
using namespace std;
const int N=480,M=11,mod=1e9+7;
char s[N];
int a[N][N],n,m,ans,dp[N][N][M],T,kase=0;
int main()
{
scanf("%d",&T);
while(T--)
{
ans=0;
memset(dp,0,sizeof(dp));
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++)
{
scanf("%s",s);
for(int j=0;j<m;j++)
a[i][j]=s[j]-'0';
}
for(int i=n-1;i>=0;i--)
{
for(int j=m-1;j>=0;j--)
{
for(int x=0;x<11;x++)
{
int tmp=(x+a[i][j])%11;
int tmp2=(11-tmp)%11;
if(i<n-1) (dp[i][j][x]+=dp[i+1][j][tmp2])%=mod;
if(j<m-1) (dp[i][j][x]+=dp[i][j+1][tmp2])%=mod;
if(tmp==0)(dp[i][j][x]+=1)%=mod;
if(x==0) (ans+=dp[i][j][x])%=mod;
}
}
}
printf("Case %d: %d\n",++kase,ans);
}
return 0;
}