汉诺塔 X - HDU 2511
1. 问题
Time limit: 1000 ms
Memory limit: 32768 kB
问题描述
1,2,…,n表示n个盘子.数字大盘子就大.n个盘子放在第1根柱子上.大盘不能放在小盘上.在第1根柱子上的盘子是a[1],a[2],…,a[n]. a[1]=n,a[2]=n-1,…,a[n]=1.即a[1]是最下面的盘子.把n个盘子移动到第3根柱子.每次只能移动1个盘子,且大盘不能放在小盘上.问第m次移动的是哪一个盘子,从哪根柱子移到哪根柱子.例如:n=3,m=2. 回答是 :2 1 2,即移动的是2号盘,从第1根柱子移动到第2根柱子。
Input
第1行是整数T,表示有T组数据,下面有T行,每行2个整数n (1 ≤ n ≤ 63) ,m≤ 2^n-1
Output
输出第m次移动的盘子号数和柱子的号数.
Sample Input
4
3 2
4 5
39 183251937942
63 3074457345618258570
Sample Output
2 1 2
1 3 1
2 2 3
2 2 3
2. 分析
可以看到本题的数据相当大,按照常规方法使用递归会存在 时间超限 和 内存超限 两种问题,所以此题应该使用其他方法进行优化。因为汉诺塔问题本身是可以通过递推解决,所以本题可能可以通过找规律解决,于是我尝试打表输出了如下信息。
注:格式为 " No.移动次数: [ 盘子编号 ] 起始柱编号 -> 目的柱编号"。
Now there is 1 plates.
No.1: [ 1 ] 1 -> 3
Now there is 2 plates.
No.1: [ 1 ] 1 -> 2
No.2: [ 2 ] 1 -> 3
No.3: [ 1 ] 2 -> 3
Now there is 3 plates.
No.1: [ 1 ] 1 -> 3
No.2: [ 2 ] 1 -> 2
No.3: [ 1 ] 3 -> 2
No.4: [ 3 ] 1 -> 3
No.5: [ 1 ] 2 -> 1
No.6: [ 2 ] 2 -> 3
No.7: [ 1 ] 1 -> 3
Now there is 4 plates.
No.1: [ 1 ] 1 -> 2
No.2: [ 2 ] 1 -> 3
No.3: [ 1 ] 2 -> 3
No.4: [ 3 ] 1 -> 2
No.5: [ 1 ] 3 -> 1
No.6: [ 2 ] 3 -> 2
No.7: [ 1 ]