HDU 2511 - 汉诺塔 X (二分法)

本文介绍了一种使用二分法解决HDU 2511 - 汉诺塔X问题的方法。当面临大规模数据时,常规递归解法可能导致超时或内存超限,通过观察发现移动次数与盘子数之间的关系,可以采用二分算法来确定每次移动的盘子号数和柱子号数。文章提供了具体的分析和C语言实现代码。
摘要由CSDN通过智能技术生成

 

汉诺塔 X - HDU 2511

点此跳转到问题原页面
 

1. 问题

Time limit: 1000 ms
Memory limit: 32768 kB

问题描述

1,2,…,n表示n个盘子.数字大盘子就大.n个盘子放在第1根柱子上.大盘不能放在小盘上.在第1根柱子上的盘子是a[1],a[2],…,a[n]. a[1]=n,a[2]=n-1,…,a[n]=1.即a[1]是最下面的盘子.把n个盘子移动到第3根柱子.每次只能移动1个盘子,且大盘不能放在小盘上.问第m次移动的是哪一个盘子,从哪根柱子移到哪根柱子.例如:n=3,m=2. 回答是 :2 1 2,即移动的是2号盘,从第1根柱子移动到第2根柱子。

Input

第1行是整数T,表示有T组数据,下面有T行,每行2个整数n (1 ≤ n ≤ 63) ,m≤ 2^n-1

Output

输出第m次移动的盘子号数和柱子的号数.

Sample Input

4
3 2
4 5
39 183251937942
63 3074457345618258570

Sample Output

2 1 2
1 3 1
2 2 3
2 2 3

 

2. 分析

可以看到本题的数据相当大,按照常规方法使用递归会存在 时间超限内存超限 两种问题,所以此题应该使用其他方法进行优化。因为汉诺塔问题本身是可以通过递推解决,所以本题可能可以通过找规律解决,于是我尝试打表输出了如下信息。
注:格式为 " No.移动次数: [ 盘子编号 ] 起始柱编号 -> 目的柱编号"。

Now there is 1 plates.
No.1: [ 1 ] 1 -> 3
Now there is 2 plates.
No.1: [ 1 ] 1 -> 2
No.2: [ 2 ] 1 -> 3
No.3: [ 1 ] 2 -> 3
Now there is 3 plates.
No.1: [ 1 ] 1 -> 3
No.2: [ 2 ] 1 -> 2
No.3: [ 1 ] 3 -> 2
No.4: [ 3 ] 1 -> 3
No.5: [ 1 ] 2 -> 1
No.6: [ 2 ] 2 -> 3
No.7: [ 1 ] 1 -> 3
Now there is 4 plates.
No.1: [ 1 ] 1 -> 2
No.2: [ 2 ] 1 -> 3
No.3: [ 1 ] 2 -> 3
No.4: [ 3 ] 1 -> 2
No.5: [ 1 ] 3 -> 1
No.6: [ 2 ] 3 -> 2
No.7: [ 1 ]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值