flink支持的数据类型
java scala 所有基础数据类型
java scala元组类型
scala 样例类
java的简单对象
其他常见复杂数据类型 Arrays Lists Maps Enums 等
UDF函数
函数类
Flink 暴露了所有udf函数的接口(实现方式为接口或者抽象类)。例如MapFunction,FilterFunction,ProcessFunction等等
当然也可以用匿名函数的方式用
Sink
flink没有类似spark的foreach方法,让用户进行迭代的操作。所有对外的输出操作都要利用sink完成。
如以下两个就是常见 定义好的 sink
print()
writeToSocket()
新版 sink到文件的方式
具体输出到文件可参考链接
两种方式 Row-encoded Formats
另一种 Bulk-encoded Formats
//输出到文件
val sink:streamingFileSink[String] = StreamingFileSink
.forRowFormat(new Path(outputPath),new SimpleStringEncoder[String]("UTF-8")).build()
dataStream.addSink(sink)
kafka sink
依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11&l

本文介绍了Flink支持的数据类型,包括基础类型、元组、样例类和复杂类型如Arrays、Lists、Maps和Enums。接着讨论了UDF(用户定义函数),包括函数类接口如MapFunction、FilterFunction、ProcessFunction以及匿名函数的使用。此外,文章还阐述了Flink的Sink概念,由于Flink没有类似Spark的foreach方法,所以所有输出都需要通过Sink实现,例如文件Sink、Kafka Sink、Redis Sink、Elasticsearch Sink以及JDBC Sink,并提供了自定义Sink的相关信息。
最低0.47元/天 解锁文章
1270

被折叠的 条评论
为什么被折叠?



