cf 567C

27 篇文章 0 订阅
C. Geometric Progression
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

Input

The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

Output

Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

Sample test(s)
input
5 2
1 1 2 2 4
output
4
input
3 1
1 1 1
output
1
input
10 3
1 2 6 2 3 6 9 18 3 9
output
6
Note

In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

//我只想说这题太感人了 

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <cmath>
#include <map>
#include <algorithm>
using namespace std;
const int maxn=2*10e5+10;
const int inf=(1<<30);
__int64 arr[maxn],l[maxn],r[maxn];
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        memset(l,0,sizeof(l));
        memset(r,0,sizeof(r));
        map <__int64,__int64> m1,m2;
        for(int i=1;i<=n;i++)
        {
            scanf("%I64d",&arr[i]);
            m1[arr[i]]++;
            if(arr[i]%m==0&&m1[arr[i]/m]!=0)
                l[i]=m1[arr[i]/m];
            if(m==1||(arr[i]%m==arr[i]&&arr[i]%m==0))
                l[i]--;
        }
        if(n<3){printf("0\n");continue;}
        for(int i=n;i>=1;i--)
        {
            m2[arr[i]]++;
            if(m2[arr[i]*m]!=0)
                r[i]=m2[arr[i]*m];
            if(m==1||(arr[i]%m==arr[i]&&arr[i]%m==0))
                r[i]--;
        }
        __int64 ans=0;
        for(int i=1;i<=n;i++)
            ans+=l[i]*r[i];
        printf("%I64d\n",ans);
    }
    return 0;
}
too young too simple 
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <cmath>
#include <map>
#include <algorithm>
using namespace std;
const int maxn=2*10e5+10;
const int inf=(1<<30);
__int64 arr[maxn],l[maxn],r[maxn];
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        memset(l,0,sizeof(l));
        memset(r,0,sizeof(r));
        map <__int64,__int64> m1,m2;
        for(int i=1;i<=n;i++)
        {
            scanf("%I64d",&arr[i]);
            if(arr[i]%m==0&&m1[arr[i]/m]!=0)
                l[i]=m1[arr[i]/m];
            <span style="white-space:pre">	</span>m1[arr[i]]++;

        }
        if(n<3){printf("0\n");continue;}
        for(int i=n;i>=1;i--)
        {
            if(m2[arr[i]*m]!=0)
                r[i]=m2[arr[i]*m];
                m2[arr[i]]++;
        }
        __int64 ans=0;
        for(int i=2;i<=n-1;i++)
            ans+=l[i]*r[i];
        printf("%I64d\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值